
MATH3091: Statistical Modelling II
Problem Sheet 5 (Solution)

1. The time to failure (𝑌 ) of a certain type of electrical component is thought to follow an
exponential distribution, with probability density of the form

𝑓𝑌 (𝑦; 𝜆) = 𝜆 exp (−𝜆𝑦) , 𝑦 > 0; 𝜆 > 0 .

It is believed that the failure rate of a component 𝜆 is related to its electrical resistance
(𝑥) by the relationship

𝜆 = 𝛽1 + 𝛽2𝑥 .
Suppose that 𝑦1, ⋯ , 𝑦𝑛 are observations of the times to failure, 𝑌1, ⋯ , 𝑌𝑛 for 𝑛 such
components with corresponding resistances 𝑥1, ⋯ , 𝑥𝑛.

a. Write down the likelihood in terms of 𝛽1 and 𝛽2 and hence derive a pair of simulta-
neous equations, the solutions of which are the maximum likelihood estimates.

b. Calculate the observed and expected information matrices. Are the Newton-
Raphson and the Fisher scoring methods identical for this problem? Justify your
answer.

Solution:

a. The likelihood is
ℒ(𝛽) =

𝑛
∏
𝑖=1

𝜆𝑖(𝛽)𝑒−𝜆𝑖(𝛽)𝑦𝑖 .

The log-likelihood is

ℓ(𝛽) =
𝑛

∑
𝑖=1

log 𝜆𝑖(𝛽) −
𝑛

∑
𝑖=1

𝜆𝑖(𝛽)𝑦𝑖 .

Differentiating with respect to 𝛽𝑗, 𝑗 = 1, 2, gives

𝜕
𝜕𝛽𝑗

ℓ(𝛽) =
𝑛

∑
𝑖=1

1
𝜆𝑖(𝛽)

𝜕𝜆𝑖
𝜕𝛽𝑗

−
𝑛

∑
𝑖=1

𝜕𝜆𝑖
𝜕𝛽𝑗

𝑦𝑖 ,
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where
𝜕𝜆𝑖
𝜕𝛽1

= 1; 𝜕𝜆𝑖
𝜕𝛽2

= 𝑥𝑖 .

So
𝜕

𝜕𝛽1
ℓ(𝛽) =

𝑛
∑
𝑖=1

1
𝜆𝑖(𝛽) −

𝑛
∑
𝑖=1

𝑦𝑖 ,

and
𝜕

𝜕𝛽2
ℓ(𝛽) =

𝑛
∑
𝑖=1

𝑥𝑖
𝜆𝑖(𝛽) −

𝑛
∑
𝑖=1

𝑥𝑖𝑦𝑖 .

So the MLE ̂𝛽 = ( ̂𝛽1, ̂𝛽2)⊤ satisfies

𝑛
∑
𝑖=1

1
𝜆𝑖( ̂𝛽)

=
𝑛

∑
𝑖=1

𝑦𝑖;
𝑛

∑
𝑖=1

𝑥𝑖
𝜆𝑖( ̂𝛽)

=
𝑛

∑
𝑖=1

𝑥𝑖𝑦𝑖 ,

or 𝑛
∑
𝑖=1

1
̂𝛽1 + ̂𝛽2𝑥𝑖

=
𝑛

∑
𝑖=1

𝑦𝑖;
𝑛

∑
𝑖=1

𝑥𝑖
̂𝛽1 + ̂𝛽2𝑥𝑖

=
𝑛

∑
𝑖=1

𝑥𝑖𝑦𝑖 .

b. We have

𝐻𝑗𝑘(𝛽) = 𝜕2

𝜕𝛽𝑗𝜕𝛽𝑘
ℓ(𝛽)

=
𝑛

∑
𝑖=1

𝜕
𝜕𝛽𝑘

( 1
𝜆𝑖(𝛽)

𝜕𝜆𝑖
𝜕𝛽𝑗

− 𝜕𝜆𝑖
𝜕𝛽𝑗

𝑦𝑖)

=
𝑛

∑
𝑖=1

−1
𝜆𝑖(𝛽)2

𝜕𝜆𝑖
𝜕𝛽𝑗

𝜕𝜆𝑖
𝜕𝛽𝑘

+ 1
𝜆𝑖(𝛽)

𝜕2𝜆𝑖
𝜕𝛽𝑗𝜕𝛽𝑘

− 𝜕2𝜆𝑖
𝜕𝛽𝑗𝜕𝛽𝑘

𝑦𝑖

= −
𝑛

∑
𝑖=1

1
𝜆𝑖(𝛽)2

𝜕𝜆𝑖
𝜕𝛽𝑗

𝜕𝜆𝑖
𝜕𝛽𝑘

as 𝜕2𝜆𝑖
𝜕𝛽𝑗𝜕𝛽𝑘

= 0.

So the observed information is

−𝐻(𝛽) = (
∑𝑛

𝑖=1
1

(𝛽1+𝛽2𝑥𝑖)2 ∑𝑛
𝑖=1

𝑥𝑖
(𝛽1+𝛽2𝑥𝑖)2

∑𝑛
𝑖=1

𝑥𝑖
(𝛽1+𝛽2𝑥𝑖)2 ∑𝑛

𝑖=1
𝑥2

𝑖
(𝛽1+𝛽2𝑥𝑖)2

) ,

and the Fisher information matrix ℐ(𝛽) = −𝐻(𝛽), as the observed information matrix does
not depend on 𝑦. The Newton-Raphson and Fisher scoring methods will be identical for
this problem, because the observed information matrix and the Fisher information matrix are
identical.
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2. Suppose 𝑌𝑖 ∼ Geometric(𝑝𝑖), the geometric distribution as studied in Question 2 of
Problem Sheet 4. We want to model how 𝑝𝑖 depends on explanatory variables 𝑥𝑖.

a. Assuming a GLM with canonical link function, write down a formula for 𝑝𝑖 in terms
of 𝑥𝑖. Is this a sensible model?

b. Suppose instead that
logit(𝑝𝑖) = log 𝑝𝑖

1 − 𝑝𝑖
= x⊤

𝑖 𝛽 .

Show that this is a GLM with a non-canonical link function, and write down the
link function corresponding to this model.

c. Derive an expression for the scaled deviance for this model, writing ̂𝜇𝑖 for the
estimate of 𝜇𝑖 = 𝔼(𝑌𝑖) under the model from part (b). Write an expression for ̂𝜇𝑖
in terms of 𝛽̂, the MLE of 𝛽.

Solution:

a. With the canonical link, we always have

𝜃𝑖 = 𝜂𝑖 = 𝑥⊤
𝑖 𝛽,

for the canonical parameter 𝜃𝑖. In this case, from Question 2 of Problem Sheet 4, we
have 𝜃𝑖 = log(1 − 𝑝𝑖), or 𝑝𝑖 = 1 − exp{𝜃𝑖}, so

𝑝𝑖 = 1 − exp{𝑥⊤
𝑖 𝛽} .

This is not sensible, as 𝑥⊤
𝑖 𝛽 could take any real value, so 1 − exp{𝑥𝑇

𝑖 𝛽} could take any
value in (−∞, 1), but we want 𝑝𝑖 ∈ (0, 1).

b. We have 𝑝𝑖 = 𝜇−1
𝑖 , and 𝜇𝑖 = 𝑔−1(𝜂𝑖), so

𝑝𝑖 = 1
𝑔−1(𝜂𝑖)

.

So we need to choose 𝑔(⋅) such that

1
𝑔−1(𝜂) = logit−1(𝜂) = exp(𝜂)

1 + exp(𝜂) .

This means that
𝑔−1(𝜂) = 1 + exp(−𝜂),

so inverting this gives the required link function

𝑔(𝜇) = − log(𝜇 − 1) .
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c. From Problem Sheet 4, Question 2, we have

𝑏(𝜃) = − log(𝑒−𝜃 − 1) , 𝜇𝑖 = 𝑏′(𝜃𝑖) = 1
1 − 𝑒𝜃

𝑖
, 𝜃𝑖 = log 𝜇𝑖 − 1

𝜇𝑖
.

So

𝑏(𝜃𝑖) = − log(𝑒−𝜃𝑖 − 1) = − log ( 𝜇𝑖
𝜇𝑖 − 1 − 1) = − log ( 1

𝜇𝑖 − 1) = log(𝜇𝑖 − 1) .

The scaled deviance is

𝐿0𝑠 = 2
𝑛

∑
𝑖=1

𝑦𝑖[ ̂𝜃(𝑠)
𝑖 − ̂𝜃(0)

𝑖 ] − [𝑏( ̂𝜃(𝑠)
𝑖 ) − 𝑏( ̂𝜃(0)

𝑖 )]

= 2
𝑛

∑
𝑖=1

𝑦𝑖 [log ̂𝜇(𝑠)
𝑖 − 1

̂𝜇(𝑠)
𝑖

− log ̂𝜇(0)
𝑖 − 1

̂𝜇(0)
𝑖

] − [log( ̂𝜇(𝑠)
𝑖 − 1) − log( ̂𝜇(0)

𝑖 − 1)] .

3. We return to the beetle data studied in Computer Lab 5, with observations on 𝑛 = 8
groups of beetles. There we considered the model:

beetle_glm <- glm(prop_killed ~ dose, data = beetle, family = binomial,
weights = exposed)

We could have also considered a model with quadratic dependence on dose

beetle_glm_quad <- glm(prop_killed ~ dose + I(dose^2), data = beetle,
family = binomial, weights = exposed)

a. Write down mathematical expressions for the two models. Show that beetle_glm is
nested with beetle_glm_quad, and write down the null hypothesis 𝐻0 and the alternative
hypothesis 𝐻1 you would use for comparing the models.

b. Consider the following output of a summary() call. What is the scaled deviance for
beetle_glm?

summary(beetle_glm)

Call:
glm(formula = prop_killed ~ dose, family = binomial, data = beetle,

weights = exposed)

Coefficients:
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Estimate Std. Error z value Pr(>|z|)
(Intercept) -60.717 5.181 -11.72 <2e-16 ***
dose 34.270 2.912 11.77 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 284.202 on 7 degrees of freedom
Residual deviance: 11.232 on 6 degrees of freedom
AIC: 41.43

Number of Fisher Scoring iterations: 4

c. The scaled deviance for beetle_glm_quad is 3.1949. Calculate the log likelihood ratio
test statistic 𝐿01 for testing 𝐻0 against 𝐻1. Under 𝐻0, what is the distribution of this
statistic? Hence conduct a hypothesis test of 𝐻0 against 𝐻1, and make a conclusion
about which model you prefer.

Solution:

a. Let 𝑌𝑖 be the number of beetles killed and 𝑥𝑖 for the dose in group 𝑖. In both cases, we
have 𝑌𝑖 ∼ binomial(𝑛𝑖, 𝑝𝑖), where logit(𝑝𝑖) = 𝜂𝑖 and 𝑛𝑖 is the number of beetles exposed
in the 𝑖-th group. In beetle_glm, we have

𝜂𝑖 = 𝛽1 + 𝛽2𝑥𝑖 .

In beetle_glm_quad, we have

𝜂𝑖 = 𝛽1 + 𝛽2𝑥𝑖 + 𝛽3𝑥2
𝑖 .

We can compare these models by testing 𝐻0 ∶ 𝛽3 = 0 against 𝐻1 ∶ “𝛽3 is unrestricted”.

b. The scaled deviance for beetle_glm is 11.232.

c. We have 𝐿01 = 𝐿0𝑠 − 𝐿1𝑠, where 𝐿0𝑠 is the scaled deviance under 𝐻0 (mod_glm), so
𝐿0𝑠 = 11.232, and 𝐿1𝑠 is the scaled deviance under 𝐻1 (mod_glm_quad), so 𝐿1𝑠 = 3.1949.
So 𝐿01 = 11.232 − 3.1949 = 8.04.

Under 𝐻0, 𝐿01 ∼ 𝜒2
1, as 𝑝 − 𝑞 = 3 − 2 = 1. So we should reject 𝐻0 if 𝐿01 is greater than the

95% point of the 𝜒2
1 distribution, or

qchisq(0.95, df = 1)

[1] 3.841459
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Since 8.04 > 3.84, we reject 𝐻0, and prefer beetle_glm_quad to beetle_glm.

We could do this test in R with

anova(beetle_glm, beetle_glm_quad, test = "LRT")

Analysis of Deviance Table

Model 1: prop_killed ~ dose
Model 2: prop_killed ~ dose + I(dose^2)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 6 11.2322
2 5 3.1949 1 8.0373 0.004582 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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