MATH3091: Statistical Modelling II

Problem Sheet 5 (Solution)

1. The time to failure (Y) of a certain type of electrical component is thought to follow an exponential distribution, with probability density of the form

$$f_Y(y;\lambda) = \lambda \exp(-\lambda y), \quad y > 0; \quad \lambda > 0.$$

It is believed that the failure rate of a component λ is related to its electrical resistance (x) by the relationship

$$\lambda = \beta_1 + \beta_2 x \, .$$

Suppose that y_1, \dots, y_n are observations of the times to failure, Y_1, \dots, Y_n for n such components with corresponding resistances x_1, \dots, x_n .

- a. Write down the likelihood in terms of β_1 and β_2 and hence derive a pair of simultaneous equations, the solutions of which are the maximum likelihood estimates.
- b. Calculate the observed and expected information matrices. Are the Newton-Raphson and the Fisher scoring methods identical for this problem? Justify your answer.

Solution:

a. The likelihood is

$$\mathcal{L}(\beta) = \prod_{i=1}^{n} \lambda_i(\beta) e^{-\lambda_i(\beta)y_i} .$$

The log-likelihood is

$$\ell(\beta) = \sum_{i=1}^{n} \log \lambda_i(\beta) - \sum_{i=1}^{n} \lambda_i(\beta) y_i.$$

Differentiating with respect to β_i , j = 1, 2, gives

$$\frac{\partial}{\partial \beta_j} \ell(\beta) = \sum_{i=1}^n \frac{1}{\lambda_i(\beta)} \frac{\partial \lambda_i}{\partial \beta_j} - \sum_{i=1}^n \frac{\partial \lambda_i}{\partial \beta_j} y_i \,,$$

where

$$\frac{\partial \lambda_i}{\partial \beta_1} = 1; \qquad \frac{\partial \lambda_i}{\partial \beta_2} = x_i.$$

So

$$\frac{\partial}{\partial \beta_1} \ell(\beta) = \sum_{i=1}^n \frac{1}{\lambda_i(\beta)} - \sum_{i=1}^n y_i \,,$$

and

$$\frac{\partial}{\partial \beta_2} \ell(\beta) = \sum_{i=1}^n \frac{x_i}{\lambda_i(\beta)} - \sum_{i=1}^n x_i y_i \,.$$

So the MLE $\hat{\beta} = (\hat{\beta}_1, \hat{\beta}_2)^{\top}$ satisfies

$$\sum_{i=1}^n \frac{1}{\lambda_i(\hat{\beta})} = \sum_{i=1}^n y_i; \qquad \sum_{i=1}^n \frac{x_i}{\lambda_i(\hat{\beta})} = \sum_{i=1}^n x_i y_i\,,$$

or

$$\sum_{i=1}^n \frac{1}{\hat{\beta}_1 + \hat{\beta}_2 x_i} = \sum_{i=1}^n y_i; \qquad \sum_{i=1}^n \frac{x_i}{\hat{\beta}_1 + \hat{\beta}_2 x_i} = \sum_{i=1}^n x_i y_i \,.$$

b. We have

$$\begin{split} H_{jk}(\beta) &= \frac{\partial^2}{\partial \beta_j \partial \beta_k} \ell(\beta) \\ &= \sum_{i=1}^n \frac{\partial}{\partial \beta_k} \left(\frac{1}{\lambda_i(\beta)} \frac{\partial \lambda_i}{\partial \beta_j} - \frac{\partial \lambda_i}{\partial \beta_j} y_i \right) \\ &= \sum_{i=1}^n \frac{-1}{\lambda_i(\beta)^2} \frac{\partial \lambda_i}{\partial \beta_j} \frac{\partial \lambda_i}{\partial \beta_k} + \frac{1}{\lambda_i(\beta)} \frac{\partial^2 \lambda_i}{\partial \beta_j \partial \beta_k} - \frac{\partial^2 \lambda_i}{\partial \beta_j \partial \beta_k} y_i \\ &= -\sum_{i=1}^n \frac{1}{\lambda_i(\beta)^2} \frac{\partial \lambda_i}{\partial \beta_j} \frac{\partial \lambda_i}{\partial \beta_k} \end{split}$$

as
$$\frac{\partial^2 \lambda_i}{\partial \beta_i \partial \beta_k} = 0$$
.

So the observed information is

$$-H(\beta) = \begin{pmatrix} \sum_{i=1}^n \frac{1}{(\beta_1 + \beta_2 x_i)^2} & \sum_{i=1}^n \frac{x_i}{(\beta_1 + \beta_2 x_i)^2} \\ \sum_{i=1}^n \frac{x_i}{(\beta_1 + \beta_2 x_i)^2} & \sum_{i=1}^n \frac{x_i^2}{(\beta_1 + \beta_2 x_i)^2} \end{pmatrix} \,,$$

and the Fisher information matrix $\mathcal{I}(\beta) = -H(\beta)$, as the observed information matrix does not depend on y. The Newton-Raphson and Fisher scoring methods will be identical for this problem, because the observed information matrix and the Fisher information matrix are identical.

- 2. Suppose $Y_i \sim \text{Geometric}(p_i)$, the geometric distribution as studied in Question 2 of Problem Sheet 4. We want to model how p_i depends on explanatory variables x_i .
 - a. Assuming a GLM with canonical link function, write down a formula for p_i in terms of x_i . Is this a sensible model?
 - b. Suppose instead that

$$\operatorname{logit}(p_i) = \log \frac{p_i}{1 - p_i} = \mathbf{x}_i^{\intercal} \boldsymbol{\beta} \,.$$

Show that this is a GLM with a non-canonical link function, and write down the link function corresponding to this model.

c. Derive an expression for the scaled deviance for this model, writing $\hat{\mu}_i$ for the estimate of $\mu_i = \mathbb{E}(Y_i)$ under the model from part (b). Write an expression for $\hat{\mu}_i$ in terms of $\hat{\beta}$, the MLE of β .

Solution:

a. With the canonical link, we always have

$$\theta_i = \eta_i = x_i^{\top} \beta,$$

for the canonical parameter θ_i . In this case, from Question 2 of Problem Sheet 4, we have $\theta_i = \log(1 - p_i)$, or $p_i = 1 - \exp\{\theta_i\}$, so

$$p_i = 1 - \exp\{x_i^\top \beta\} .$$

This is not sensible, as $x_i^{\top}\beta$ could take any real value, so $1 - \exp\{x_i^T\beta\}$ could take any value in $(-\infty, 1)$, but we want $p_i \in (0, 1)$.

b. We have $p_i = \mu_i^{-1}$, and $\mu_i = g^{-1}(\eta_i)$, so

$$p_i = \frac{1}{g^{-1}(\eta_i)} \,.$$

So we need to choose $g(\cdot)$ such that

$$\frac{1}{g^{-1}(\eta)} = \operatorname{logit}^{-1}(\eta) = \frac{\exp(\eta)}{1 + \exp(\eta)}.$$

This means that

$$g^{-1}(\eta) = 1 + \exp(-\eta),$$

so inverting this gives the required link function

$$g(\mu) = -\log(\mu - 1).$$

c. From Problem Sheet 4, Question 2, we have

$$b(\theta) = -\log(e^{-\theta}-1)\,, \qquad \mu_i = b'(\theta_i) = \frac{1}{1-e_i^\theta}\,, \qquad \theta_i = \log\frac{\mu_i-1}{\mu_i}\,.$$

So

$$b(\theta_i) = -\log(e^{-\theta_i} - 1) = -\log\left(\frac{\mu_i}{\mu_i - 1} - 1\right) = -\log\left(\frac{1}{\mu_i - 1}\right) = \log(\mu_i - 1)\,.$$

The scaled deviance is

$$\begin{split} L_{0s} &= 2\sum_{i=1}^n y_i [\hat{\theta}_i^{(s)} - \hat{\theta}_i^{(0)}] - [b(\hat{\theta}_i^{(s)}) - b(\hat{\theta}_i^{(0)})] \\ &= 2\sum_{i=1}^n y_i \left[\log \frac{\hat{\mu}_i^{(s)} - 1}{\hat{\mu}_i^{(s)}} - \log \frac{\hat{\mu}_i^{(0)} - 1}{\hat{\mu}_i^{(0)}} \right] - \left[\log(\hat{\mu}_i^{(s)} - 1) - \log(\hat{\mu}_i^{(0)} - 1) \right]. \end{split}$$

3. We return to the **beetle** data studied in Computer Lab 5, with observations on n = 8 groups of beetles. There we considered the model:

We could have also considered a model with quadratic dependence on dose

- a. Write down mathematical expressions for the two models. Show that beetle_glm is nested with beetle_glm_quad, and write down the null hypothesis H_0 and the alternative hypothesis H_1 you would use for comparing the models.
- b. Consider the following output of a summary() call. What is the scaled deviance for beetle_glm?

```
summary(beetle_glm)
```

```
Call:
```

```
glm(formula = prop_killed ~ dose, family = binomial, data = beetle,
    weights = exposed)
```

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -60.717 5.181 -11.72 <2e-16 *** dose 34.270 2.912 11.77 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 284.202 on 7 degrees of freedom Residual deviance: 11.232 on 6 degrees of freedom

AIC: 41.43

Number of Fisher Scoring iterations: 4

c. The scaled deviance for beetle_glm_quad is 3.1949. Calculate the log likelihood ratio test statistic L_{01} for testing H_0 against H_1 . Under H_0 , what is the distribution of this statistic? Hence conduct a hypothesis test of H_0 against H_1 , and make a conclusion about which model you prefer.

Solution:

a. Let Y_i be the number of beetles killed and x_i for the dose in group i. In both cases, we have $Y_i \sim \text{binomial}(n_i, p_i)$, where $\text{logit}(p_i) = \eta_i$ and n_i is the number of beetles exposed in the i-th group. In beetle_glm , we have

$$\eta_i = \beta_1 + \beta_2 x_i \,.$$

In beetle_glm_quad, we have

$$\eta_i = \beta_1 + \beta_2 x_i + \beta_3 x_i^2.$$

We can compare these models by testing $H_0: \beta_3 = 0$ against $H_1: "\beta_3$ is unrestricted".

- b. The scaled deviance for beetle_glm is 11.232.
- c. We have $L_{01}=L_{0s}-L_{1s}$, where L_{0s} is the scaled deviance under H_0 (mod_glm), so $L_{0s}=11.232$, and L_{1s} is the scaled deviance under H_1 (mod_glm_quad), so $L_{1s}=3.1949$. So $L_{01}=11.232-3.1949=8.04$.

Under H_0 , $L_{01} \sim \chi_1^2$, as p-q=3-2=1. So we should reject H_0 if L_{01} is greater than the 95% point of the χ_1^2 distribution, or

```
qchisq(0.95, df = 1)
```

[1] 3.841459

Since 8.04 > 3.84, we reject H_0 , and prefer beetle_glm_quad to beetle_glm.

We could do this test in R with

```
anova(beetle_glm, beetle_glm_quad, test = "LRT")
```

Analysis of Deviance Table

```
Model 1: prop_killed ~ dose

Model 2: prop_killed ~ dose + I(dose^2)
   Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1          6     11.2322
2          5     3.1949     1     8.0373     0.004582 **
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```