
MATH3091: Statistical Modelling II
Problem Sheet 4 (Solution)

1. Suppose 𝑌 ∼ Exponential(𝜆), with p.d.f.

𝑓𝑌 (𝑦; 𝜆) = 𝜆𝑒−𝜆𝑦 ,

for 𝑦 > 0 and 𝜆 > 0. Show that the exponential distribution is a member of the
exponential family, and hence find 𝔼(𝑌 ), Var(𝑌 ), and the variance function 𝑉 (𝜇).

Solution: We have

𝑓𝑌 (𝑦; 𝜆) = 𝜆𝑒−𝜆𝑦 = exp (−𝜆𝑦 + log 𝜆) .

This is of exponential family form, with 𝜃 = −𝜆, 𝑏(𝜃) = − log 𝜆 = − log(−𝜃), 𝑎(𝜙) = 1 and
𝑐(𝑦, 𝜙) = 0.

So
𝔼(𝑌 ) = 𝑏′(𝜃) = 𝑑

𝑑𝜃 (− log(−𝜃)) = −1
𝜃 = 1

𝜆 = 𝜇 ,

Var(𝑌 ) = 𝑎(𝜙)𝑏″(𝜃) = 1 × 𝑑
𝑑𝜃 (−𝜃−1) = 𝜃−2 = 𝜆−2 ,

and the variance function is

𝑉 (𝜇) = 𝜃−2 = [−𝜇−1]2 = 𝜇2 .

2. Suppose 𝑌 ∼ Geometric(𝑝), with p.d.f.

𝑓𝑌 (𝑦; 𝑝) = 𝑝(1 − 𝑝)𝑦−1 ,

for 𝑦 ∈ {1, 2, 3, ⋯}, 𝑝 ∈ (0, 1). Show that the geometric distribution is a member of the
exponential family, and hence find 𝔼(𝑌 ), Var(𝑌 ), and the variance function 𝑉 (𝜇).

1



Solution: We have

𝑓𝑌 (𝑦; 𝑝) = 𝑝(1 − 𝑝)𝑦−1

= exp (log 𝑝 + (𝑦 − 1) log(1 − 𝑝))

= exp (𝑦 log(1 − 𝑝) + log 𝑝
1 − 𝑝) .

This is of exponential family form, with 𝜃 = log(1 − 𝑝) (so 𝑝 = 1 − 𝑒𝜃),

𝑏(𝜃) = − log ( 𝑝
1 − 𝑝) = − log (1 − 𝑒𝜃

𝑒𝜃 ) = − log(𝑒−𝜃 − 1) ,

𝑎(𝜙) = 1 and 𝑐(𝑦, 𝜙) = 0.

So
𝔼(𝑌 ) = 𝑏′(𝜃) = 𝑑

𝑑𝜃 (− log(𝑒−𝜃 − 1)) = 𝑒−𝜃

𝑒−𝜃 − 1 = 1
1 − 𝑒𝜃 = 1

𝑝 = 𝜇 ,

Var(𝑌 ) = 𝑎(𝜙)𝑏″(𝜃) = 1 × 𝑑
𝑑𝜃 ( 1

1 − 𝑒𝜃 ) = 𝑒𝜃

(1 − 𝑒𝜃)2 = 1 − 𝑝
𝑝2 ,

and the variance function is

𝑉 (𝜇) = 𝑒𝜃

(1 − 𝑒𝜃)2 = 1 − 𝜇−1

(𝜇−1)2 = 𝜇(𝜇 − 1) .

3. What is the canonical link function for the exponential distribution (Q1)? What about
for the geometric distribution (Q2)?

Solution:

For the exponential distribution, we have 𝑏′(𝜃) = −𝜃−1 = 𝜇, so the canonical link is

𝑔(𝜇) = 𝑏′−1(𝜇) = −𝜇−1 .

For the geometric distribution, we have 𝑏′(𝜃) = (1 − 𝑒𝜃)−1 = 𝜇. Solving for 𝜃, we find

1 − 𝑒𝜃 = 𝜇−1 .

So
𝜃 = log(1 − 𝜇−1) ,

and the canonical link is
𝑔(𝜇) = 𝑏′−1(𝜇) = log(1 − 𝜇−1) .
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4. Suppose that 𝑌𝑖, 𝑖 = 1, ⋯ , 𝑛, are independent Poisson(𝜇𝑖) random variables, that 𝑥𝑖 is
an explanatory variable, and that

log 𝜇𝑖 = 𝛽1 + 𝛽2𝑥𝑖.

a. Write down the log-likelihood function of 𝛽1 and 𝛽2 explicitly. Hence, derive a
pair of simultaneous equations, the solution of which are the maximum likelihood
estimates for 𝛽 = (𝛽1, 𝛽2)⊤.

b. Express the above model in terms of 𝜂 = X𝛽, where X is the appropriate 𝑛 × 2
matrix.

Solution:

a. We have
𝜇𝑖 = 𝜇𝑖(𝛽) = exp(𝛽1 + 𝛽2𝑥𝑖) ,

and the p.d.f. for the 𝑖-th observation is

𝑓𝑌𝑖
(𝑦𝑖; 𝜇𝑖) = 𝜇𝑦𝑖

𝑖 𝑒−𝜇𝑖

𝑦𝑖!
.

The likelihood is
ℒ(𝛽) =

𝑛
∏
𝑖=1

𝜇𝑖(𝛽)𝑦𝑖𝑒−𝜇𝑖(𝛽)

𝑦𝑖!
.

The log-likelihood is

ℓ(𝛽) = log
𝑛

∏
𝑖=1

𝜇𝑖(𝛽)𝑦𝑖𝑒−𝜇𝑖(𝛽)

𝑦𝑖!
=

𝑛
∑
𝑖=1

𝑦𝑖 log 𝜇𝑖(𝛽) −
𝑛

∑
𝑖=1

𝜇𝑖(𝛽) −
𝑛

∑
𝑖=1

log 𝑦𝑖! .

Differentiating with respect to 𝛽𝑗, 𝑗 = 1, 2, gives

𝜕
𝜕𝛽𝑗

ℓ(𝛽) =
𝑛

∑
𝑖=1

𝑦𝑖
𝜇𝑖(𝛽)

𝜕𝜇𝑖
𝜕𝛽𝑗

−
𝑛

∑
𝑖=1

𝜕𝜇𝑖
𝜕𝛽𝑗

,

where
𝜕𝜇𝑖
𝜕𝛽1

= exp(𝛽1 + 𝛽2𝑥𝑖) = 𝜇𝑖(𝛽) ,

and
𝜕𝜇𝑖
𝜕𝛽2

= 𝑥𝑖 exp(𝛽1 + 𝛽2𝑥𝑖) = 𝑥𝑖𝜇𝑖(𝛽) .

So
𝜕

𝜕𝛽1
ℓ(𝛽) =

𝑛
∑
𝑖=1

𝑦𝑖 −
𝑛

∑
𝑖=1

𝜇𝑖(𝛽) =
𝑛

∑
𝑖=1

𝑦𝑖 −
𝑛

∑
𝑖=1

exp(𝛽1 + 𝛽2𝑥𝑖) ,
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and
𝜕

𝜕𝛽2
ℓ(𝛽) =

𝑛
∑
𝑖=1

𝑥𝑖𝑦𝑖 −
𝑛

∑
𝑖=1

𝑥𝑖𝜇𝑖(𝛽) =
𝑛

∑
𝑖=1

𝑥𝑖𝑦𝑖 −
𝑛

∑
𝑖=1

𝑥𝑖 exp(𝛽1 + 𝛽2𝑥𝑖) .

So the MLE ̂𝛽 = ( ̂𝛽1, ̂𝛽2)⊤ satisfies

𝑛
∑
𝑖=1

exp( ̂𝛽1 + ̂𝛽2𝑥𝑖) =
𝑛

∑
𝑖=1

𝑦𝑖

and 𝑛
∑
𝑖=1

𝑥𝑖 exp( ̂𝛽1 + ̂𝛽2𝑥𝑖) =
𝑛

∑
𝑖=1

𝑥𝑖𝑦𝑖 .

b. Let 𝜂 = X𝛽, where

X =
⎛⎜⎜⎜⎜
⎝

1 𝑥1
1 𝑥2
⋮ ⋮
1 𝑥𝑛

⎞⎟⎟⎟⎟
⎠

,

then 𝑌𝑖 ∼ Poisson(𝜇𝑖), where 𝜇𝑖 = exp(𝜂𝑖).

4


