Sometimes a model completely specifies the probability distribution of \(T_1,T_2,\cdots , T_n\).
For example, for the leukaemia survival times, we might assume the model
\[
T_1,T_2,\ldots , T_n \stackrel{\text{i.i.d.}}{\sim} \mathrm{lognormal}(\mu,\sigma^2)
\] where \(\mu=3\) and \(\sigma^2=4\).
Note that \(T_1,T_2,\cdots , T_n \stackrel{\text{i.i.d.}}{\sim} \mathrm{lognormal}(\mu,\sigma^2)\) is equivalent to \[
\log(T_1), \log(T_2), \cdots , \log(T_n) \stackrel{\text{i.i.d.}}{\sim} \mathrm{N}(\mu,\sigma^2),
\] where \(\log\) is the natural logarithm.