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Chapter 1

Introduction

1.1 Survival analysis

The aim of statistical modelling is to investigate the relationship between an observed response (usually

denoted by y) and k explanatory variables (denoted by x = (x1, . . . , xk)). In MATH3085/6143, the response

is always the time from origin until an event of interest occurs. Because the response is a time, we

denote the observation t and the corresponding random variable T .

Survival analysis refers to a set of special statistical methods required to analyse time-to-event data.

The object of survival modelling is to learn about the variability in T in a population of interest and (often)

how this is associated with other potentially explanatory variables (covariates).

1.2 Applications of survival analysis and alternative terminol-

ogy

Historically, survival analysis originated from medical applications where the event was death and the

time to event was called the survival time. However, survival analysis now has applications in many areas

beyond medicine including the following.

• Demography - age at ‘milestone’ such as

– death

– birth of first child

• Engineering

– failure time of component

• Criminology

– time to recidivism

• Medicine

– survival after heart attack

– time from cancer treatment to relapse

• Psychology

– response time to stimulus

• Economics

– duration of unemployment
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Important actuarial examples where we are required to model survival data include:

• time between pensionable age and death;

• time between taking out a life insurance policy and death;

• time between taking out a critical illness insurance policy and onset of illness;

• failure time for a product with warranty insurance.

Due to the different application areas, you may encounter different terminology. The following table

summarises alternative terminology you may encounter.

survival analysis origin event of interest time to event

event history analysis initial event death survival time

duration analysis initiating event failure failure time

hazard modelling starting event endpoint response time

reliability analysis time origin outcome waiting time

terminating event duration

target event spell

episode

1.3 Why is Survival Analysis ‘special’?

Why does survival analysis need its own module? Answers include the following.

• Models for nonnegative random variable T . In standard normal linear modelling, the response has a

normal distribution which allows for negative responses.

• Data are often not well-described by standard probability distributions, e.g. the normal distribution.

• Data are typically censored (see Section 1.5).

• Model parameters often not of primary interest. Often interest in the whole survival distribution,

e.g. all quantiles, not just measures of location such as mean or median.

• Time-dependent covariates, i.e. they are not fixed like in standard regression modelling.

• Truncation: some cases may be missing (see Section 1.6).
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1.4 Types of time to event

The time to event can materialise in different ways.

• Continuous time

In theory the value of T can be recorded to arbitrary precision.

In practice the value of T is rounded to convenient level of precision.

Tied data values cannot occur in theory but do in practice.

• Grouped continuous time

Imprecise time measurements, only reporting interval in which observation lies.

e.g. time in completed years, months, weeks or days

common in population mortality studies (report age in completed years at death)

• Discrete time

True discrete-time scale, T = 1, 2, 3, · · ·
Examples include number of operations of a machine to first failure, number of attempts to pass a

test . . .

1.5 Censoring

A common feature of survival data is censoring. Censoring occurs when we do not know all times-to-event

T exactly, but only have bounds on some of the survival times.

Special methods are needed for censored data because:

• censored observations provide information;

• exclusion of censored data leads to bias;

• discarding censored data would be inefficient.

Observations of T may be:

• observed precisely;

• right censored;

• left censored;
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• interval censored.

In statistical modelling, censoring has to be taken into account to avoid bias.

1.5.1 Right censoring

An observation of T is right censored if we only observe a lower bound for T , i.e. we know that T was

greater than some value, e.g. 18, but not the exact value itself.

A censored value with be denoted by T ∗ or T+, so we know

T ≥ T ∗ equivalently T ∈ (T ∗,∞) .

In the picture below, observation 1 is not censored and we would observe the response T1. For observations

2 and 3 are right censored: we only know that the true responses T2 and T3 are greater than T ∗2 and T ∗3 ,

respectively.
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Reasons for right censoring include:

• event (e.g. death) has not been observed before the end of study;

• individual lost-to-followup;

• individual withdrawal from study.

In most survival analyses (particularly involving mortality) we should expect right censoring.

1.5.2 Left and interval censoring

An observation of T is left censored if we only observe an upper bound for T , i.e. we know that T was less

than some value, e.g. 18, but not the exact value itself. Left censoring is not as common as right censoring.
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An observation of T is interval censored if we only observe an interval for T , i.e. we know that T is between

two values, e.g. (18, 20), but not the exact value itself. Note that left and right censored observations are

actually interval censored where the upper or lower limit of the interval is −∞ or ∞, respectively.

1.5.3 Informative and non-informative censoring

Censoring is informative if the event of censoring conveys extra information about T (other than it is in a

particular range). Otherwise, censoring is non-informative.

Let C be the variable governing the time at which an observation is (right) censored. If T > C then we

observe T = (C,∞], and if C > T then we observe T precisely.

A sufficient condition for non-informative censoring is that C and T are independent variables. For example

C is a (non-random) time fixed in advance of the study.

Examples of causes of informative censoring include:

• patients lost to follow-up because of good prognosis;

• withdrawals of patients due to ill health related to outcome of interest.

Informative censoring causes complications for statistical modelling because we need a joint model for T

and C. We will assume non-informative censoring throughout.

1.6 Truncation

Left truncation of survival data occurs when cases whose survival times T are shorter than a given time,

either fixed or random, are not observed e.g. a study of heart attack survival which excludes individuals

who died before reaching hospital.

Right truncation of survival data occurs when cases which haven’t experienced the event are not observed,

e.g. data obtained from death certificates

Truncation is different to censoring in that with truncation we do not observe anything associated with a

truncated value but with censoring we know the observation existed we just do not know its exact value.

In statistical modelling, truncation has to be taken into account to avoid bias.
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1.7 Goals of survival analysis

Some basic goals of survival analysis include the following.

• Describe how survival in the sample depends on time.

• Inference to the population of interest.

• Compare whole survival distributions for groups.

• Explain survival differentials using explanatory variables:

• Predict future survival.
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Chapter 2

Statistical Models

2.1 Introduction

Statistical analysis (or inference) involves drawing conclusions, and making predictions and decisions, using

the evidence provided to us by observed data.

To do this, we use statistical models, where we simulate the process by which the observed data were

generated through a probability distribution.

• The form of the model helps us to understand the real-world process by which the data were generated.

• If the model explains the observed data well, then it should also inform us about future (or unob-

served) data, and hence help us to make predictions (and decisions contingent on unobserved data).

• The use of statistical models, together with a carefully constructed methodology for their analysis

also allows us to quantify the uncertainty associated with any conclusions, predictions or decisions

we make.

We rarely believe in our models, but regard them as temporary constructs subject to improvement.

2.2 Example: Leukaemia

Survival times are given for 33 patients who died from acute myelogenous leukaemia. In R, this can be

found in the leuk object in the MASS package.

> library(MASS)

> head(leuk)
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wbc ag time

1 2300 present 65

2 750 present 156

3 4300 present 100

4 2600 present 134

5 6000 present 16

6 10500 present 108

> tail(leuk)

wbc ag time

28 31000 absent 8

29 26000 absent 4

30 21000 absent 3

31 79000 absent 30

32 100000 absent 4

33 100000 absent 43

For the moment, ignore the columns for wbc and ag.

2.3 Notation

Suppose that we have n data observations, then we use

t1, t2, . . . , tn

to denote these observed event (failure, death, . . .) or censoring times.

For the leukaemia survival times in Section 2.2, n = 33 and t1 = 65, t2 = 156, . . . , t33 = 43.

We denote the complete data by the vector t = (t1, t2, . . . , tn).

In a statistical model, we consider t1, t2, . . . , tn to be observations of random variables (denoted with the

corresponding capital letters)

T1, T2, . . . , Tn

We also use the vector notation T = (T1, T2, . . . , Tn).

This is the same as MATH2010, but with t and T , instead of y and Y , respectively.
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2.4 Statistical models

A statistical model specifies a probability distribution for the random variables T corresponding to the

data observations t.

Providing a specification for the distribution of n jointly varying random variables is made much easier if

we can make some simplifying assumptions, such as

1. T1, T2, . . . , Tn are independent random variables

2. T1, T2, . . . , Tn have the same probability distribution (so t1, t2, . . . , tn are observations of a single

random variable T )

Assumption 1 is very common, even in quite complex examples.

Assumption 2 is not always appropriate, but may be reasonable when we are modelling a homogeneous pop-

ulation, without other information. Making assumption 2 means we cannot include explanatory variables

so sometimes we will not make this assumption.

When we make assumptions 1 and 2, we say that T1, T2, . . . , Tn are independent and identically distributed

(i.i.d.)

2.5 A fully specified model

Sometimes a model completely specifies the probability distribution of T1, T2, . . . , Tn.

For example, for the leukaemia survival times in Section 2.2, we might assume the model

T1, T2, . . . , Tn
iid∼ lognormal(µ, σ2)

where µ = 3 and σ2 = 4. Note that T1, T2, . . . , Tn
iid∼ lognormal(µ, σ2) is equivalent to

log T1, log T2, . . . , log Tn
iid∼ N(µ, σ2),

where log is the natural logarithm.

The key is that we have assumed exact values for µ and σ2. This would be appropriate when there is

some external (to the data) theory as to why the model (in particular the values of µ = 3 and σ2 = 4) is

appropriate.
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The data can then be used to assess the plausibility of the model. Do the data support the model or not?

We rarely have external theory to specify a model so precisely.

2.6 A parametric statistical model

For the leukaemia survival times in Section 2.2, a more common model would be

T1, T2, . . . , Tn
iid∼ lognormal(µ, σ2)

where µ and σ2 are unspecified.

This is called a parametric statistical model as it completely specifies the probability distribution which

generated the data, apart from a (small) number of constants (parameters), in this case the values of µ

and σ2.

The data are then used to estimate the unknown parameters (µ and σ2 here), and to assess the plausibility

of other assumptions (lognormal distribution, independence, etc.)

2.7 A nonparametric statistical model

Sometimes, it is not appropriate, or we want to avoid, making a precise specification for the distribution

which generated T1, T2, . . . , Tn. Then, we might propose the model

T1, T2, . . . , Tn are i.i.d. random variables.

This is sometimes described as a nonparametric (or distribution-free) specification. It imposes limitations

on the kind of statistical inferences we can obtain, but still allows us to do some interesting things, such

as the following.

• Use exploratory (graphical) techniques, such as box plots and histograms to learn about the distri-

bution of the (common) random variable T which generated the data

• Estimate features of the distribution of T , such as its expectation E(T ), variance V ar(T ), P (T > t0)

for some specified t0, etc.

• Estimate the distribution or survivor function of T (to be covered in this module).
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2.8 Regression models

Often, we model survival data to learn about the relationship between survival time T and other potentially

explanatory variables x1, x2, . . . .

The leukaemia survival times in Section 2.2 include values of two such explanatory variables:

• ag, taking values in the set {present, absent} (a test result)

• wbc (white blood cell count), a numerical variable

In a regression model, we assume that T1, T2, . . . , Tn are independent random variables but they are not

identically distributed (we make assumption 1 but not assumption 2).

Instead, we assume the differences between their distributions is explained by a regression function of the

values of the explanatory variables.

For example, for i = 1, . . . , n we assume Ti ∼ lognormal(µi, σ
2) independently with

µi = β0 + β1xi1 + β2xi2

where xi1 is the ith value of wbc and

xi2 =

{
1 if ag is present;

0 if ag is absent;

i.e. xi2 is a dummy variable.

2.9 The data analysis process

The data analysis can be summarised by the following diagram.

Obtain data

↓
Examine (visualise) data

↓
Specify models

↓
Estimate model parameters

↓
Compare models
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↓
Assess chosen model

↓
Base predictions/decisions on chosen model

In MATH3085/6143 we focus on models and methods which have been specifically developed for survival

data.
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Chapter 3

The Survival Distribution

3.1 The density function

We model survival time using a random variable T .

If T is a continuous random variable (as we shall generally assume throughout this module) then its

distribution is defined by its probability density function (p.d.f.) fT (t), or f(t) for short.

Recall that, for any values t1 and t2, we have

P (t1 ≤ T ≤ t2) =

∫ t2

t1

fT (t)dt
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3.2 The distribution function

Recall that the distribution function FT (t), for a random variable T , is defined as

FT (t) = P (T ≤ t)

and that for a continuous survival variable with p.d.f. fT , we have

FT (t) =

∫ t

0

fT (s)ds
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3.3 The survival function

In survival analysis, we usually prefer to focus on the Survival Function (sometimes called the Survivor

Function), ST (t), which is defined as

ST (t) = P (T > t)

so for a continuous survival variable with p.d.f. fT , we have

ST (t) =

∫ ∞
t

fT (s)ds
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3.3.1 The survival function: properties

• The survival function is a decreasing function of t with ST (0) = 1 and ST (t)→ 0 as t→∞.

• The survival function is related to the distribution function through

ST (t) + FT (t) = 1 ⇒ ST (t) = 1− FT (t)

17



• The expected lifetime is given, in terms of the survival function by

E(T ) =

∫ ∞
0

tfT (u)du

= [−uST (u)]∞0 +

∫ ∞
0

ST (u)du

=

∫ ∞
0

ST (t)dt,

the area under the survival function curve.

3.3.2 The residual survival function

The residual survival function is defined for t ≥ 0 as

ST (t|x) = P (T > t+ x|T > x)

for some specified x. It gives the probability of surviving beyond t + x given that you have survived past

x.

It defines the distribution of future (beyond x) survival for the subpopulation of survivors up to time x.
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Using the standard definition of a conditional probability, we have

ST (t|x) =
P (T > t+ x and T > x)

P (T > x)

=
P (T > t+ x)

P (T > x)

=
ST (t+ x)

ST (x)

Similarly the residual distribution function is FT (t|x) = 1− ST (t|x).

3.4 The hazard function

The hazard function is defined for t ≥ 0 as

hT (t) = lim
δt→0

P (T ≤ t+ δt|T > t)

δt

The numerator P (T ≤ t + δt|T > t) can be thought of as the expected number of future events (failures)

in the time interval (t, t+ δt] (in a residual population of size 1 at time t).

Hence, the ratio

P (T ≤ t+ δt|T > t)

δt
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is the event (failure) rate over the time interval (t, t+ δt].

The hazard function is the limiting (or instantaneous) event rate at time t.

3.4.1 The hazard function: properties

• The hazard function tells you how likely the event is to occur at (or around) a particular time t,

given that it has not occurred before then.

• The hazard function is given by

hT (t) = lim
δt→0

P (T ≤ t+ δt|T > t)

δt

= lim
δt→0

P (T ≤ t+ δt and T > t)

δtP (T > t)

= lim
δt→0

P (t < T ≤ t+ δt)

δtP (T > t)

= lim
δt→0

fT (t)δt

δtP (T > t)

=
fT (t)

ST (t)
.

• The only constraint on the hazard function hT (t) is that it must be non-negative for t ∈ (0,∞).

• There is no need to construct a ‘residual hazard function’, because hT (t) already explicitly conditions

on T > t.
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3.4.2 Hazard v. density

The hazard function compares the relative probabilities of events occurring at different times t, conditional

on T > t and hence accounts for the size of the population at risk at t.

The p.d.f. simply compares the relative probabilities of events occurring at different times in the population

at large.

A time t with a high value for h(t) is not necessarily a likely failure time, as there may be a small probability

that any individual survives until then.
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3.5 The integrated hazard function

The integrated hazard function (cumulative hazard function) is defined by

HT (t) =

∫ t

0

hT (u)du.
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The cumulative hazard describes the “total exposure to risk” for a survivor up to T = t.

Note that

HT (t) =

∫ t

0

hT (u)du =

∫ t

0

fT (u)

ST (u)
du.

Using the substitution, v = 1/ST (t), then

dv

du
=

fT (u)

ST (u)2
,

and

du =
dvST (u)2

fT (u)
.

Then

HT (t) =

∫ 1/ST (t)

1

1

v
dv

= [log v]1/ST (t)1

= − logST (t).

22



3.6 Relationships

Only one of the functions fT , FT , ST , hT or HT needs to be specified to completely determine the distri-

bution of T .

In survival analysis, interest is usually focussed on the survivor function S(t) and/or the hazard function

h(t).

The others can then be calculated using the relationships presented in the following table.

fT ST hT

fT (t) = − d
dt
ST (t) hT (t) exp[−

∫ t
0
hT (s)ds]

ST (t) =
∫∞
t
fT (s)ds exp[−

∫ t
0
hT (s)ds]

hT (t) = fT (t)∫∞
t fT (s)ds

− d
dt

logST (t)
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Chapter 4

Distributions for Survival Modelling

We now introduce some distributions which are commonly used in survival models. In each case, we present

a family of distributions which depend on one or more parameters.

Each of these distributions has sample space (0,∞) so is appropriate as a model for a survival time T .

In each case, we shall present the density function fT (t), the survival function ST (t) and the hazard function

hT (t).

4.1 The exponential distribution

The exponential (or negative exponential) distribution has a single parameter, the rate (scale) β > 0, is

denoted exp(β) and has p.d.f.

fT (t) = β exp (−βt)

survival function

ST (t) = exp (−βt) ,

and hazard function

hT (t) = β.

If T ∼ exp(β) then

E(T ) =
1

β
and V ar(T ) =

1

β2
.

Note that the p.d.f. is sometimes parameterised as 1
γ

exp
(
− t
γ

)
, i.e. γ = 1/β.
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The survival function is given by

ST (t) =

∫ ∞
t

fT (u)du

=

∫ ∞
t

β exp (−βu) du

= [− exp (−βu)]∞t

= exp (−βt) .

The hazard function is

hT (t) =
fT (t)

ST (t)

=
β exp (−βt)
exp (−βt)

= β.
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Using integration by parts, the expectation is

E(T ) =

∫ ∞
0

βt exp (−βt) dt

= [−t exp (−βt)]∞0 +

∫ ∞
0

exp (−βt) dt

=

[
− 1

β
exp (−βt)

]∞
0

=
1

β
.

The variance can also be calculated via V ar(T ) = E(T 2)− E(T )2, where

E(T 2) =

∫ ∞
0

βt2 exp (−βt) dt

is found using integration by parts (twice).

The plots below show the density, survival and hazard for two different exponential distributions with

β = 1 and β = 2.
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4.2 The Weibull distribution

The Weibull distribution has two parameters, the shape α > 0 and the scale β > 0, is denoted Weibull(α, β)

and has p.d.f.

fT (t) = αβ (βt)α−1 exp {− (βt)α}

survival function

ST (t) = exp {− (βt)α} ,

and hazard function

hT (t) = αβ (βt)α−1 .

If T ∼Weibull(α, β) then

E(T ) =
1

β
Γ

(
1 +

1

α

)
V ar(T ) =

1

β2

{
Γ

(
1 +

2

α

)
− Γ

(
1 +

1

α

)2
}

where Γ(r) =
∫∞
0
xr−1e−xdx is the Gamma function.
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The survival function is given by

ST (t) =

∫ ∞
t

fT (u)du

=

∫ ∞
t

αβ (βu)α−1 exp {− (βu)α} du.

Using the substitution v = βαuα,

dv

du
= αβαuα−1 and du = α−1β−αu1−αdv.

Then

ST (t) =

∫ ∞
βαtα

exp (−v) dv

= [− exp (−v)]∞βαtα

= exp {− (βt)α} .
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The hazard function is

hT (t) =
fT (t)

ST (t)

=
αβ (βt)α−1 exp {− (βt)α}

exp {− (βt)α}

= αβ (βt)α−1 .

The expectation is

E(T ) =

∫ ∞
0

tfT (t)dt

=

∫ ∞
0

α (βt)α exp {− (βt)α} dt.

Using the substitution u = (βt)α, (i.e. t = u1/α/β), then

du

dt
= αβαtα−1 and dt = α−1β−αt1−αdu.

Then

E(T ) =
1

β

∫ ∞
0

u1/α exp(−u)du

=
1

β
Γ

(
1 +

1

α

)
.
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The expression for the variance can be proved in a similar way.

The plots below show the density, survival and hazard for four different Weibull distributions given by

different values of α but all with β = 1.
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4.2.1 Weibull distribution properties

• Weibull(1, β) = exp(β)

So the Weibull with shape parameter α = 1 is exponential.

• If X ∼Weibull(α, β), then

T = bX ∼Weibull(α, β/b).
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• If X ∼ exp(1), then

T =
X1/α

β
∼Weibull(α, β).

4.3 The log-logistic distribution

The log-logistic distribution has two parameters, the shape α > 0 and the scale β > 0, is denoted

loglogistic(α, β) and has p.d.f.

fT (t) =
αβ(βt)α−1

[1 + (βt)α]2

survival function

ST (t) =
1

1 + (βt)α
,

and hazard function

hT (t) =
αβ(βt)α−1

1 + (βt)α
.

If T ∼ loglogistic(α, β) then

E(T ) =
π

αβ sin(π/α)

The survival function is given by

ST (t) =

∫ ∞
t

fT (u)du

=

∫ ∞
t

αβ(βu)α−1

[1 + (βu)α]2
du.
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Using the substitution v = 1 + (βu)α, then

dv

du
= αβαuα−1 and du =

dv

αβ(βu)α−1
.

Then

ST (t) =

∫ ∞
1+(βt)α

1

v2
dv

=

[
−1

v

]∞
1+(βt)α

=
1

1 + (βt)α
.

The hazard function is

hT (t) =
fT (t)

ST (t)

=

αβ(βt)α−1

[1+(βt)α]2

1
1+(βt)α

=
αβ(βt)α−1

1 + (βt)α
.

The expectation will not be proven here!

The plots below show the density, survival and hazard for two different log-logistic distributions given by

different values of α but all with β = 1.
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4.4 The lognormal distribution

The lognormal distribution has two parameters, µ and σ2 > 0, is denoted lognormal(µ, σ2), is the distri-

bution of expX where X ∼ N(µ, σ2) and has p.d.f.

fT (t) =
1

(2π)1/2σt
exp

(
− 1

2σ2
[log t− µ]2

)
=

1

σt
φ

(
log t− µ

σ

)
survival function

ST (t) = 1− Φ

(
log t− µ

σ

)
,

where φ and Φ are the standard normal density and distribution functions. The lognormal hazard function

is hT (t) = fT (t)/ST (t).

If T ∼ lognormal(µ, σ2) then

E(T ) = exp(µ+ σ2/2) and V ar(T ) = exp(2µ+ σ2)[expσ2 − 1].

We do not derive the survival and hazard function here.

The plots below show the density, survival and hazard for two different lognormal distributions given by

different values of σ but all with µ = 0.
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4.5 The Gompertz distribution

The Gompertz distribution has two parameters, the shape α > 0 and the scale β > 0, is denoted

Gompertz(α, β) and has p.d.f.

fT (t) = α exp

(
βt− α

β
(eβt − 1)

)
survival function

ST (t) = exp

(
−α
β

(eβt − 1)

)
,

and hazard function

hT (t) = α exp(βt)

See Exercise 5 on Worksheet 1 for derivations of the survival and hazard function.

The plots below show the density, survival and hazard for two different Gompertz distributions given by

different values of α but all with β = 1.
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Exponential hazard implies that log-hazard is linear in t which can be a plausible model for human lifetimes

from middle age onwards.
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Chapter 5

Survival models: parameter estimation

We start by considering models for a homogenous population of survival times, from which we have observed

a sample t = (t1, . . . tn).

Some of the observations may be censored.

• Here, we will only consider right censoring (most common) only.

• Extension to other forms of censoring is possible.

Let d1, . . . , dn be a set of censoring indicators, with

di =

{
0 unit i was censored at ti so actual failure time > ti

1 failure of unit i was observed at ti

Therefore t1, . . . tn are (possibly censored) observations of i.i.d. random variables T = (T1, . . . , Tn) ≡ T .

5.1 Parametric models

A parametric model for T specifies the p.d.f fT , apart from the values of a (small) number of unknown

parameters, which we denote by θ.

For example, for a Weibull model, θ comprises the shape and scale parameters α and β, i.e. θ = (α, β).

We write fT (t;θ) to recognise the dependence of the p.d.f. fT on θ.

Similarly, we explicitly recognise the dependence of the survivor ST (t;θ) and hazard hT (t;θ) functions on

θ.

Estimating the distribution of T then simply involves estimating θ.
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Once we have an estimate θ̂ of θ, we can obtain the corresponding estimates ST (t; θ̂) and hT (t; θ̂) of the

survival and hazard functions.

Typically, we use maximum likelihood estimation to obtain θ̂ in a parametric model.

5.2 Maximum likelihood estimation

Maximum likelihood estimation is a general method for parameter estimation with many good properties

(see MATH3044 for more).

Initially consider a scalar parameter θ.

The maximum likelihood estimator (m.l.e.) θ̂ maximises the likelihood, L(θ), which is simply the joint

probability (density) of the observed data, treated as a function of the unknown θ.

Assuming i.i.d. observations with no censoring

L(θ) =
n∏
i=1

fT (ti; θ)

as the joint p.d.f. of independent variables is just the product of their individual (marginal) p.d.f.s

5.3 Censored data likelihood

For a right censored observation ti is not an observed value of Ti, but an interval (ti,∞) for Ti.

Hence, the appropriate contribution to the likelihood for a censored ti is not fT (ti; θ) but rather P (Ti >

ti) = ST (ti).
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Assuming i.i.d. observations with (right) censoring indicators d1, . . . , dn,

L(θ) =
∏
i:di=1

fT (ti; θ)
∏
i:di=0

ST (ti; θ)

This is a product of two terms: one for the exact observations and one for the censored observations.

5.4 Maximum likelihood properties

Usually, it is easier to maximise the log-likelihood `(θ) = logL(θ)

For large samples, we have the asymptotic approximation

θ̂
approx∼ N(θ, I(θ)−1)

where

I(θ) = E

[
− ∂2

∂θ2
`(θ)

]

is called the Fisher information. A multi-parameter extension of this result exists but is outside the scope

of this module
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In large samples the m.l.e. is approximately unbiased, and we can construct 100(1−α)% confidence intervals

as

θ̂ ± z1−α/2s.e.(θ̂)

where s.e.(θ̂), the standard error given by

s.e.(θ̂) =
[
I(θ̂)−1

]1/2

and z1−α/2 is the 1− α/2th quantile of the standard normal. This can be numerically calculated using the

R function qnorm. For example, for α = 0.1, α = 0.05 and α = 0.01

> qnorm(0.95)

[1] 1.644854

> qnorm(0.975)

[1] 1.959964

> qnorm(0.995)

[1] 2.575829

which would be needed for 90%, 95% and 99% confidence intervals, respectively.
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5.5 Example: exponential model likelihood

Suppose that we want to fit an exponential model to our data, so

L(β) =
∏
i:di=1

fT (ti; β)
∏
i:di=0

ST (ti; β)

=
∏
i:di=1

β exp (−βti)
∏
i:di=0

exp (−βti)

= βd+ exp

(
−β

n∑
i=1

ti

)

where d+ =
∑n

i=1 di is the number of uncensored observations.

Therefore the log-likelihood is

`(β) = d+ log β − β
n∑
i=1

ti.

The m.l.e. for β in the exponential model maximises `(β) and therefore solves

0 =
∂

∂β
`(β) =

d+
β
−

n∑
i=1

ti.

Therefore

d+

β̂
=

n∑
i=1

ti ⇒ β̂ =
d+∑n
i=1 ti

.
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so θ̂ is the number of uncensored observations divided by the sum of the (censored and observed) survival

times.

The second derivative of the log-likelihood is

∂2

∂β2
`(β) = −d+

β2
.

The Fisher information is

I(β) = E

(
− ∂2

∂β2
`(β)

)

= E

(
d+
β2

)

=
d+
β2
.

So now

s.e.(β̂) =
[
I(β̂)−1

]1/2
=

β̂

d
1/2
+

.
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5.5.1 Gehan data

Remission times (in weeks) from a clinical trial of 42 leukaemia patients. Patients matched in pairs and

randomised to 6-mercaptopurine or control. in R, data is found in the MASS package in the gehan.

> library(MASS)

> head(gehan)

pair time cens treat

1 1 1 1 control

2 1 10 1 6-MP

3 2 22 1 control

4 2 7 1 6-MP

5 3 3 1 control

6 3 32 0 6-MP

> tail(gehan)

pair time cens treat

37 19 4 1 control

38 19 9 0 6-MP

39 20 1 1 control

40 20 6 0 6-MP

41 21 8 1 control

42 21 10 0 6-MP

We fit exponential models separately to the treatment group and the control group.

For the 6-MP treatment group, n = 21, d+ = 9 and
∑n

i=1 ti = 359, so

β̂ =
9

359
= 0.025 and s.e.(θ̂) =

0.025

91/2
= 0.008
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For the control treatment group, n = 21, d+ = 21 and
∑n

i=1 ti = 182, so

β̂ =
21

182
= 0.115 and s.e.(β̂) =

0.115

211/2
= 0.025

Assuming this model, approximate 95% confidence intervals for β are

• [0.009, 0.041] (6-MP group)

• [0.066, 0.165] (control group)

The plot below shows the log-likelihood curves for both groups.
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5.6 Example: Weibull model likelihood

For a Weibull(α, β) model,

L(α, β) =
∏
i:di=1

fT (ti;α, β)
∏
i:di=0

ST (ti;α, β)

=
∏
i:di=1

αβ (βt)α−1 exp {− (βt)α}
∏
i:di=0

exp {− (βt)α}

= αd+βαd+

( ∏
i:di=1

ti

)α−1

exp

(
−

n∑
i=1

(βti)
α

)
.

Therefore

`(α, β) = d+ logα + αd+ log β + (α− 1)
∑
i:di=1

log ti − βα
n∑
i=1

tαi .

Requires numerical solution of ∂`
∂α

= 0, ∂`
∂β

= 0 (use R or similar).
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Chapter 6

Non-parametric Survival Estimation

Frequently, we want to estimate the distribution of T for the (i.i.d.) homogeneous model based on ob-

servations t1, . . . , tn with (right) censoring indicators d1, . . . , dn, without assuming a particular parametric

family for fT .

The likelihood is given by

L =
∏
i:di=1

fT (ti)
∏
i:di=0

ST (ti)

and this can be made infinitely large by concentrating fT in infinitesimally narrow regions around each

observed ti (i.e. those for which di = 1).

Hence the maximum likelihood estimate for the survival distribution is a discrete distribution on the

observed failure times {ti : di = 1}.

6.1 Discrete survival distributions and likelihood

A discrete survival variable T takes values in a sample space 0 < t′1 < t′2 < · · · < t′m < ∞ and is defined

by any of

• probability function (p.f.)

fi = P (T = t′i),

for i = 1, . . . ,m;
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• survival function

S(t) = P (T > t) = 1−
∑
j:t′j≤t

fj

≡ si t ∈ [t′i, t
′
i+1), i = 0, . . . ,m

where t′0 ≡ 0 and t′m+1 ≡ ∞.

• hazard function

hi = P (T = t′i|T ≥ t′i)

=
P (T = t′i and T ≥ t′i)

P (T ≥ t′i)

=
P (T = t′i)

P (T ≥ t′i)

=
fi

P (T > t′i−1)

=
fi
si−1
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We have s0 = 1 and

si = P (T > t′i)

= 1− P (T ≤ t′i)

= 1−
(
P (T ≤ t′i−1) + fi

)
= P (T > t′i−1)− fi

= si−1 − fi

= si−1 − hisi−1

= si−1(1− hi)

Therefore

si =
i∏

j=1

(1− hj) and fi = hi

i−1∏
j=1

(1− hj)

It is best to describe the survival distributions through {hi} which are simply constrained to be in [0, 1],

rather than {fi} or {si} which have more complex constraints.

• Let 0 < t′1 < t′2 < · · · < t′m < ∞ denote the distinct observed failure times observed in our sample

{t1, . . . , tn}

• t′0 = 0 and t′m+1 =∞
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• d′i is the number of failures observed at t′i, (i = 1, . . . ,m), so

m∑
i=1

d′i =
n∑
i=1

di = d+

• ci (i = 0, . . . ,m) is the number of censored observations with censoring times between t′i and t′i+1

The likelihood is given by

L =
m∏
i=1

f
d′i
i

m∏
i=0

scii =
m∏
i=1

[
hi

i−1∏
j=1

(1− hj)

]d′i m∏
i=1

[
i∏

j=1

(1− hj)

]ci

=
m∏
i=1

[(
hi

1− hi

)d′i i∏
j=1

(1− hj)d
′
i+ci

]

=

[
m∏
i=1

(
hi

1− hi

)d′i] m∏
i=1

i∏
j=1

(1− hj)d
′
i+ci

=

[
m∏
i=1

(
hi

1− hi

)d′i] m∏
i=1

m∏
j=i

(1− hi)d
′
j+cj

=

[
m∏
i=1

(
hi

1− hi

)d′i] m∏
i=1

(1− hi)
∑m
j=i(d

′
j+cj)

The log-likelihood is given by

` =
m∑
i=1

[
d′i log hi − d′i log(1− hi) + log(1− hi)

m∑
j=i

(d′j + cj)

]
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so

∂`

∂hi
=
d′i
hi

+
d′i

1− hi
−
∑m

j=i(d
′
j + cj)

1− hi

and

d′i

ĥi
+
d′i −

∑m
j=i(d

′
j + cj)

1− ĥi
= 0

⇒ ĥi =
d′i∑m

j=i(d
′
j + cj)

, i = 1, . . . ,m

6.2 The Kaplan-Meier estimator

The discrete hazard m.l.e. is

ĥi =
d′i
ri
, i = 1, . . . ,

where

ri =
m∑
j=i

(d′j + cj)

is called the number at risk (of failure) at t′i.

The hazard at each t′i is therefore estimated by the observed number of failures at t′i as a proportion of the

number at risk at t′i.

49



The corresponding estimator of the survival function

Ŝ(t) =
i∏

j=1

(1− ĥj) =
i∏

j=1

(
1−

d′j
rj

)
t ∈ [t′i, t

′
i+1), i = 0, . . . ,m

is called the Kaplan-Meier (or product-limit) estimator.

6.2.1 Notes on the Kaplan-Meier estimator

• Although the Kaplan-Meier estimator represents a discrete survival distribution, we use it to estimate

ST (t) for continuous T .

• For censored times tied with uncensored times, we treat the censored times as infinitessimally larger

than the uncensored ones with which they are tied (so ci includes observations censored at t′i).

• If the largest time is censored (so cm > 0), then the Kaplan-Meier estimator is positive at the largest

uncensored time and therefore the estimated survivor function is nowhere zero.

• Sometimes, it is informative to plot logS(t), recalling that the hazard function h(t) is equal to

− d
dt

logS(t). Hence logS(t) is linear for exponentially distributed data (constant hazard).
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6.2.2 Example of calculating the Kaplan-Meier estimate by hand

Consider the following survival times t = (3, 4, 6∗, 8, 8, 10). There are m = 4 distinct observed survival

times.

i ti ti+1 ri d′i ci Ŝ(t)

0 0 3 6 0 0 1

1 3 4 6 1 0 5/6

2 4 8 5 1 1 2/3

3 8 10 3 2 0 2/9

4 10 ∞ 1 1 0 0
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6.2.3 Calculating the Kaplan-Meier estimate using R

The R code below calculates the Kaplan-Meier curve for the times in Section 6.2.2.

> time<-c(3, 4, 6, 8, 8, 10)

> cens<-c(1,1,0,1,1,1)

>

> km <- survfit(Surv(time, cens)~ 1)

>

> par(mfrow=c(1,2))

> plot(km, conf.int=FALSE, xlab="t", ylab="Survival function")

> plot(km, mark.time=TRUE, xlab="t", ylab="Survival function")

52



0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

S
ur

vi
va

l f
un

ct
io

n

0 2 4 6 8 10
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

t

S
ur

vi
va

l f
un

ct
io

n

By default the plot will include confidence intervals. In the left hand plot these have been turned off by

conf.int = TRUE. In the right hand plot, mark.time=TRUE will indicate censored times with a cross.

The below code plots survival curves for the two groups (control and 6-MP) in the gehan data.

> library(MASS)

>

> head(gehan)

pair time cens treat

1 1 1 1 control

2 1 10 1 6-MP

3 2 22 1 control

4 2 7 1 6-MP

5 3 3 1 control

6 3 32 0 6-MP

> gehan.km <- survfit(Surv(time, cens)~ treat, data = gehan)

53



> plot(gehan.km, xlab="t", ylab="Survival function", lty=c(1,2))

> legend("topright", lty=c(1,2), legend = c("6-MP","Control"))
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6.2.4 Standard errors and confidence intervals
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The standard error of the Kaplan-Meier estimator is given by Greenwood’s formula

s.e.[Ŝ(t)]2 = Ŝ(t)2
i∑

j=1

d′j
rj(rj − d′j)

t ∈ [t′i, t
′
i+1), i = 0, . . . ,m

Using a normal approximation for the sampling distribution of Ŝ(t), we can obtain endpoints of an ap-

proximate (1− α)% confidence interval for S(t) as

Ŝ(t)± z1−α/2s.e.[Ŝ(t)]

Better confidence intervals are often obtained on the log scale, using

s.e.[log Ŝ(t)]2 =
i∑

j=1

d′j
rj(rj − d′j)

t ∈ [t′i, t
′
i+1), i = 0, . . . ,m

to give endpoints of an alternative 95% confidence interval as

Ŝ(t) exp(±z1−α/2s.e.[log Ŝ(t)])
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6.3 The Nelson-Aalen estimator

The Nelson-Aalen estimator estimates the cumulative hazard function H(t) by integrating (summing) the

discrete hazard estimators ĥi = d′i/ri, and is given by

Ĥ(t) =
i∑

j=1

ĥj =
i∑

j=1

d′j
rj

t ∈ [t′i, t
′
i+1), i = 0, . . . ,m

As S(t) = exp{−H(t)}, the Nelson-Aalen estimator provides an estimator of S(t) as

Ŝ(t) = exp

(
−

i∑
j=1

d′j
rj

)
=

i∏
j=1

exp

(
−
d′j
rj

)
t ∈ [t′i, t

′
i+1), i = 0, . . . ,m

which is sometimes called the Fleming-Harrington estimator.

6.3.1 Notes on the Nelson-Aalen estimator

Plotting log Ĥ(t) against log t checks whether a Weibull model might fit the data, as for the Weibull,

H(t) = (βt)α ⇒ logH(t) = α log β + α log t
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so for Weibull data we would expect log Ĥ(t) to be linear in log t, with gradient α.

If d′i/ri is small (typical for smaller values of t) then the Kaplan-Meier and Fleming-Harrington estimators

of S(t) will be close, as

exp

(
−
d′j
rj

)
= 1−

d′j
rj

+
1

2

(
d′j
rj

)2

− · · ·

≈ 1−
d′j
rj
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Chapter 7

Survival Regression Models

Commonly, when we observe (possibly censored) survival times t1, . . . , tn, we also observe the values of k

other variables, x1, . . . , xk, for each of the n units of observation.

Then, we drop the assumption that the survival time variables T1, . . . , Tn are identically distributed, and

investigate how their distribution depends on the explanatory variables (or covariates) x1, . . . , xk.

In a regression model, we assume that the dependence of the distribution of Ti on the values of x1, . . . , xk

is through a regression function, which is typically assumed to have linear structure, as

ηi = β1xi1 + β2xi2 + · · ·+ βkxik =
k∑
j=1

xijβj = xTi β

where xi = (xi1, xi2, . . . , xik)
T is the k-vector containing the values of x1, . . . , xk for unit i and β =

(β1, β2, . . . , βk)
T is a k-vector of regression parameters.

7.1 Example: leuk data

Survival times for n = 33 patients who died from acute myelogenous leukaemia.

> library(MASS)

> head(leuk)

wbc ag time

1 2300 present 65

2 750 present 156

3 4300 present 100

4 2600 present 134

5 6000 present 16

6 10500 present 108
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Here, we have two potential explanatory variables, wbc and ag. As ag is a factor (a non-numerical variable)

we transform it in the regression function to an indicator (dummy) variable or variables, for example

I(ag = “present”) =

{
1 if ag = “present”

0 if ag = “absent”

Similarly further explanatory variables may be created from the numeric covariate wbc, e.g. wbc2 to inves-

tigate possible quadratic dependence.

7.2 Proportional hazards

As was the case with homogeneous survival models in Chapter 6, we frequently want to investigate the

dependence of Ti on x1, . . . , xk without assuming a particular parametric family for fTi .

A proportional hazards model (or Cox regression model) assumes that the hazard function for the survival

variable corresponding to the ith unit is

hTi(t) = exp
(
xTi β

)
h0(t)

where h0 is called the baseline hazard function and is not assumed to have a particular mathematical form.

Hence, we model the effect of the explanatory variables on the distribution of Ti as multiplying the baseline

hazard by the exponentiated regression function, exp ηi.
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Equivalently, using the table from page 23

STi(t) = exp

[
−
∫ t

0

hTi(s)ds

]

= exp

[
−
∫ t

0

exp
(
xTi β

)
h0(s)ds

]

= exp

[
−
∫ t

0

h0(s)ds

]exp(xTi β)

= S0(t)
exp(xTi β)

where

S0(t) = exp

[
−
∫ t

0

h0(s)ds

]

is the baseline survivor function.

7.3 Partial likelihood

We require to estimate the regression parameters β without specifying (or even estimating) the baseline

hazard h0 (so we cannot write down a likelihood, as fTi and STi are not fully specified).

The partial likelihood function is the joint probability of the observed data conditional on the observed

failure times {ti : di = 1}.

60



Conditioning on {ti : di = 1}, the partial likelihood reduces to the probability of the failures occurring in

the order in which they were observed.

Let Ri be the risk set at ti, that is

Ri = {j : tj ≥ ti}

the units with failure or censoring times at, or after, ti. Then,

P (Tj ∈ [ti, ti + δt] | j ∈ Ri) = hTj(ti)δt = exp
(
xTj β

)
h0(ti)δt

for some (infinitesimally small) δt.

Therefore

P (some j ∈ Ri fails in [ti, ti + δt]) =
∑
j∈Ri

exp
(
xTj β

)
h0(ti)δt+O(δt2)
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Hence,

P (Ti ∈ [ti, ti + δt] | some j ∈ Ri fails in [ti, ti + δt])

=
exp

(
xTi β

)
h0(ti)δt∑

j∈Ri exp
(
xTj β

)
h0(ti)δt+O(δt2)

=
exp

(
xTi β

)∑
j∈Ri exp

(
xTj β

)
+O(δt)

and in the limit δt→ 0,

P (i fails at ti | some j ∈ Ri fails at ti) =
exp

(
xTi β

)∑
j∈Ri exp

(
xTj β

)

The partial likelihood is therefore given by

L(β) = P (failures occurred in observed order)

=
∏
i:di=1

P (i fails at ti | some j ∈ Ri fails at ti)

=
∏
i:di=1

exp
(
xTi β

)∑
j∈Ri exp

(
xTj β

)

which does not depend on the baseline hazard h0.
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7.4 Tied failure times

Suppose two observations (for example i = 1 and i = 2) have the same recorded failure time. Our definition

of Ri = {j : tj ≥ ti} includes 1 ∈ R2 and 2 ∈ R1, both of which cannot be true

Different partial likelihoods arise from assuming

• 1 failed just before 2 (so 2 ∈ R1 but 1 6∈ R2)

• 2 failed just before 1 (so 2 6∈ R1 but 1 ∈ R2).

The correct action is to average over these two assumptions, so we replace the contributions of units i = 1

and i = 2 to the partial likelihood with

exp
(
xT1 β

)∑
j∈R1

exp
(
xTj β

) exp
(
xT2 β

)∑
j∈R′2

exp
(
xTj β

) +
exp

(
xT2 β

)∑
j∈R2

exp
(
xTj β

) exp
(
xT1 β

)∑
j∈R′1

exp
(
xTj β

)

where R′1 = R1 \ {2} and R′2 = R2 \ {1}.

The exact partial likelihood for tied failures times can be complicated if we have m > 2 tied failure times

(m! terms in the average). There exist approximations to the likelihood (e.g. Breslow and Efron) in the

case of tied failure times.
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7.5 Estimation

We estimate the regression parameters β using the values β̂ which maximise the partial likelihood L(β),

or partial log-likelihood

`(β) =
∑
i:di=1

xTi β −
∑
i:di=1

log

[∑
j∈Ri

exp
(
xTj β

)]
Maximisation is performed by solving (numerically) the simultaneous equations

∂

∂βi
`(β) = 0, i = 1, . . . , k.

We also obtain

V ar(β̂i) ≈ [I(β)−1]ii

where I(β) is the observed information matrix defined by

I(β)ij = − ∂2

∂βi∂βj
`(β).

In practice, we rely on computer packages to compute estimates.

7.6 Confidence intervals

As with maximum likelihood, maximum partial likelihood estimators have an asymptotic (as n → ∞)

normal distribution, so

β̂i − βi
s.e.(β̂i)

∼ N(0, 1)

can be used as an approximation in moderately large samples, where

s.e.(β̂i)
2 = [I(β̂)−1]ii
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is an estimate of the (asymptotic) standard deviation of β̂i.

Hence, a (1− α)% confidence interval for βi is

[β̂i − z1−α/2s.e.(β̂i), β̂i + z1−α/2s.e.(β̂i)]

In practice, we rely on computer packages to compute standard errors.

7.7 Hypothesis testing

In regression models, the hypothesis H0 : βj = 0 is equivalent to a model where the explanatory variable

xj has no effect on survival (as its values are omitted from the regression function xTi β).

We test this hypothesis, by noting that, under H0 : βj = 0, we have the approximation

β̂j

s.e.(β̂j)
∼ N(0, 1).

So
β̂j

s.e.(β̂j)
is a test statistic whose values can be calibrated against a standard normal distribution. For a
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α% significance level, we reject H0 when

∣∣∣∣∣ β̂j

s.e.(β̂j)

∣∣∣∣∣ > z1−α/2.

We can also calculate a p-value using

p-value = 2

(
1− P

(
Z ≤

∣∣∣∣∣ β̂j

s.e.(β̂j)

∣∣∣∣∣
))

.

This is the Wald test.

7.8 Estimating the baseline h0(t), H0(t) and S0(t)

It is not necessary to estimate h0 to answer interesting questions about which covariates affect survival

time, and how they do so.

However, as in the homogeneous model, we can estimate the complete survival distribution nonparametri-

cally, by estimating the hazard function as if the underlying process was discrete.

An estimate of the baseline hazard is given by

ĥ0(ti) =
d′i∑

j∈Ri exp(xTj β̂)
,

where d′i is the total number of failures observed at ti.

As in the homogeneous case in Chapter 6, the discrete hazard estimates can be transformed into an estimate

of the cumulative hazard or survival functions. Again, we let t′1, . . . , t
′
m be the m ordered distinct failure

times with corresponding numbers of failures d′1, . . . , d
′
m. Then

Ĥ0(t) =
i∑

j=1

ĥ0(t
′
j) =

i∑
j=1

d′j∑
k:tk≥t′j

exp(xTk β̂)
t ∈ [t′i, t

′
i+1), i = 0, . . . ,m

66



(like the Nelson-Aalen estimator in the homogeneous case) and

Ŝ0(t) =
i∏

j=1

exp

− d′j∑
k:tk≥t′j

exp(xTk β̂)

 t ∈ [t′i, t
′
i+1), i = 0, . . . ,m.

which implies

ŜTi(t) = Ŝ0(t)
exp(xTi β̂).

7.9 Fitting Cox models using R

7.9.1 gehan data

The R code below fits a Cox model with a dummy variable for treatment.

> gehan.cox <- coxph(Surv(time,event=cens)~treat,data=gehan)

> summary(gehan.cox)

Call:

coxph(formula = Surv(time, event = cens) ~ treat, data = gehan)

n= 42, number of events= 30

coef exp(coef) se(coef) z Pr(>|z|)

treatcontrol 1.5721 4.8169 0.4124 3.812 0.000138 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

exp(coef) exp(-coef) lower .95 upper .95

treatcontrol 4.817 0.2076 2.147 10.81

Concordance= 0.69 (se = 0.041 )

Likelihood ratio test= 16.35 on 1 df, p=5e-05

Wald test = 14.53 on 1 df, p=1e-04

Score (logrank) test = 17.25 on 1 df, p=3e-05
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The p-value associated with the treatment dummy variable is 1.4 × 10−4, i.e. the treatment significantly

affects survival time.

The estimated coefficient for treatment is 1.57213. This means the control treatment is estimated to

increase the hazard by a factor of

exp (1.57213) = 4.81687

relative to the 6-MP treatment. This estimate can be seen in the R output above (along with a 95%

confidence interval).

The R code below will create survival curves. The argument newdata allows us to specify values of the

explanatory variables. In this case there is one explanatory variable which can take two values. So we

compute two survival curves for those two values. For comparison, the Kaplan Meier survival curves are

also plotted in grey.

> gehan.S <- survfit(gehan.cox,

+ newdata = data.frame(treat = c("control","6-MP")))

> plot(gehan.S, ylab= "Survival function", xlab="Time", lty = c(2,1))

> lines(gehan.km, lty=c(1,2), col=8)

> legend("topright", lty = c(1,2,1,2), col = c(1,1,8,8),

+ legend = c("6-MP - Cox","Control - Cox","6-MP - KM","Control - KM"), cex=0.8)
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7.9.2 leuk data

The R code below fits a Cox model with two explanatory variables: a dummy variable for ag and a variable

given by the natural logarithm of wbc.

> leuk.cox <- coxph(Surv(time)~ag+log(wbc),data=leuk)

> summary(leuk.cox)

Call:

coxph(formula = Surv(time) ~ ag + log(wbc), data = leuk)

n= 33, number of events= 33

coef exp(coef) se(coef) z Pr(>|z|)

agpresent -1.0691 0.3433 0.4293 -2.490 0.01276 *

log(wbc) 0.3677 1.4444 0.1360 2.703 0.00687 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

exp(coef) exp(-coef) lower .95 upper .95

agpresent 0.3433 2.9126 0.148 0.7964
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log(wbc) 1.4444 0.6923 1.106 1.8857

Concordance= 0.726 (se = 0.047 )

Likelihood ratio test= 15.64 on 2 df, p=4e-04

Wald test = 15.06 on 2 df, p=5e-04

Score (logrank) test = 16.49 on 2 df, p=3e-04

The significance of both explanatory variables is immediately obvious from the two p-values 0.01276 and

0.00687. Strictly we should formal model selection using either backwards or forwards selection, or using

information criteria (see MATH2010).

The estimated coefficient for ag is -1.06905. This means ag being present is estimated to increase the

hazard by a factor of

exp (−1.06905) = 0.34333,

relative to ag being absent, i.e. ag being present reduces the hazard.

The estimated coefficient for log(wbc) is 0.3677. This log(wbc) increasing by one unit is estimated to

increase the hazard by a factor of

exp (0.3677) = 1.44441,

i.e. the higher the wbc, the higher the hazard.

> leuk.S <- survfit(leuk.cox,

+ newdata = data.frame(ag = c("present","present","absent","absent"),
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+ wbc = c(750,100000,750,100000)))

> plot(leuk.S, ylab= "Survival function", xlab="Time", lty = c(1,2,1,2),col=c(1,1,8,8))

> legend("topright", lty = c(1,2,1,2), col = c(1,1,8,8),

+ legend = c("Present, 750", "Present, 100000","Absent, 750", "Absent, 100000"), cex=0.8)
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7.10 Checking proportional hazards

The assumption that covariates affect the response through proportional hazards is a strong one and should

be checked where possible.

Recall that the survival function for Ti can be written as

STi(t) = S0(t)
exp(xTi β).
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Taking the complementary log-log of both sides

log (− logSTi(t)) = log
(
− exp

(
xTi β

)
logS0(t)

)
= xTi β + log (− logS0(t)) .

Consider units i = 1 and i = 2 who differ only in the jth covariate. Then

xT1 β =
k∑
l=1

x1lβl

= x1jβj +
∑
l 6=j

x1lβl

xT2 β = x2jβj +
∑
l 6=j

x2lβl

and

xT1 β − xT2 β = x1jβj +
∑
l 6=j

x1lβl − x2jβj −
∑
l 6=j

x2lβl

= (x1j − x2j)βj

since
∑

l 6=j x1lβl =
∑

l 6=j x2lβl.

Now

log (− logST1(t))− log (− logST2(t)) = (x1j − x2j)βj
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which does not depend on t. That means if we were to plot log (− logST1(t)) and log (− logST2(t)) against

t we should get two parallel lines (if the assumption of proportional hazards is correct).

Therefore, a strategy for checking proportional hazards for covariate xj is

• partition the data according to each distinct xj value observed

• fit a separate proportional hazards model (including all other covariates) to each subset

• the estimates of log (− logST (t)) for those separate models will be parallel if the proportional hazards

assumption holds for xj.

Clearly this is only practical if xj has few distinct values, each appearing several times (typically if xj is a

factor).

The following R code produces these plots for the gehan and leuk datasets, where xj corresponds to treat

and ag, respectively.

> logmlog<-function(x){

+ log(-log(x))}

>

> par(mfrow = c(1,2))

>

> gehan.cox1 <- coxph(Surv(time,event=cens)~1, data = gehan[gehan$treat=="control", ])

> gehan.cox2 <- coxph(Surv(time,event=cens)~1, data = gehan[gehan$treat=="6-MP", ])

>

> gehan.S1<- survfit(gehan.cox1)

> gehan.S2<- survfit(gehan.cox2)

> plot(gehan.S1, ylab= "log(-log(S(t)))", xlab = "Time", fun = logmlog,
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+ conf.int = FALSE, xlim = range(gehan$time), lty = 2)

> lines(gehan.S2, fun=logmlog, conf.int = FALSE, lty = 1)

> legend("bottomright", lty = c(2,1), legend = c("Control","6-MP"), cex = 0.8)

>

> leuk.cox1 <- coxph(Surv(time) ~ log(wbc), data = leuk[leuk$ag == "absent", ])

> leuk.cox2 <- coxph(Surv(time) ~ log(wbc), data = leuk[leuk$ag == "present", ])

>

> leuk.S1<- survfit(leuk.cox1, newdata = data.frame(wbc = mean(leuk$wbc)))

> leuk.S2<- survfit(leuk.cox2, newdata = data.frame(wbc = mean(leuk$wbc)))

>

> plot(leuk.S1, ylab= "log(-log(S(t)))", xlab = "Time", fun = logmlog,

+ conf.int = FALSE, xlim = range(leuk$time), lty = 1)

> lines(leuk.S2, fun=logmlog, conf.int = FALSE, lty = 2)

> legend("bottomright", lty = c(1,2), legend = c("Absent","Present"), cex = 0.8)
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7.11 Accelerated failure and parametric models

We have focused on semiparametric models, where the parameters β do not completely specify the survival

distribution.
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Fully parametric survival regression models do exist. For example, consider a Weibull model, with

Ti ∼ Weibull(α, θi). (We have changed the scale parameter to θ to stop confusion with the β regression

parameters.) The shape parameter α is the same for all units but the scale parameter θi is unit-specific

depending on the explanatory variables as follows

θi = 1/ exp (ηi)

= exp (−ηi)

= exp
(
−β0 − xTi β

)
= exp

(
−β0 −

∑
j=1

xijβj

)
.

Now suppose T0i ∼Weibull(α, 1), then

Ti = exp (ηi)T0i.

which can be shown using the properties in Section 4.2.1. The survival functions for T0i and Ti are

ST0i(t) = exp (−tα) STi(t) = exp (− (exp (−ηi) t)α) .

We see that the effect on the distribution of Ti of the explanatory variables, through ηi is to shrink (or

stretch) the time axis, resulting in correspondingly longer (shorter) failure times. [“one dog year = seven
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human years”]

This is called an accelerated failure time (AFT) model (or accelerated life model), and is generally expressed

through the survival function

STi(t) = S0 (t exp(−ηi))

for some baseline survival function S0. Although it is possible to consider semiparametric models (with S0

not from a standard family) it is more usual to use fully parametric accelerated failure models.

7.11.1 Families of accelerated failure models

Ti = exp(ηi)T0i where ηi = β0 + xTi β

T0i Ti

exp(1) exp(exp[−ηi])

Weibull(α, 1) Weibull(α, exp[−ηi])

loglogistic(α, 1) loglogistic(α, exp[−ηi])

lognormal(0, σ2) lognormal(ηi, σ
2)

7.12 Estimating accelerated failure models

For any parametric AFT model, we know the form of STi and fTi , so we can write down the likelihood

L(θ) =
∏
i:di=1

fTi(ti; θ)
∏
i:di=0

STi(ti; θ)

where θ comprises the regression parameters β0 and β which enter into the computation of ηi and any

other parameters, such as α.
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Estimation is performed by maximum likelihood, to obtain β̂0, β̂ etc. with standard errors computed in

the usual way.

Maximisation must be done numerically (e.g. using R)

7.12.1 Example: Weibull ART model for the gehan data

The R code below fits a Weibull ART model with a dummy variable for treatment.

> gehan.wb <- survreg(Surv(time,event=cens)~treat,data=gehan)

> summary(gehan.wb)

Call:

survreg(formula = Surv(time, event = cens) ~ treat, data = gehan)

Value Std. Error z p

(Intercept) 3.516 0.252 13.96 < 2e-16

treatcontrol -1.267 0.311 -4.08 4.5e-05

Log(scale) -0.312 0.147 -2.12 0.034

Scale= 0.732

Weibull distribution

Loglik(model)= -106.6 Loglik(intercept only)= -116.4

Chisq= 19.65 on 1 degrees of freedom, p= 9.3e-06

Number of Newton-Raphson Iterations: 5

n= 42

Confusingly, R uses the following parameterisation for the shape parameter:

α̂ =
1

scale
.
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The estimates are

β̂0 = 3.516

β̂1 = −1.267

α̂ = 1.366.

The estimate of β1 is negative meaning the treatment control will increase the scale parameter θ and

increase the hazard (all relative to the 6-MP treatment).

The following R code plots the estimated Kaplan-Meier and Cox survival curves. It thens adds estimated

survival curves from the Weibull model using the curve function.

> plot(gehan.S, ylab= "Survival function", xlab="Time", lty = c(1,2))

> lines(gehan.km, lty=c(2,1), col=8)

>

> alpha<-1/gehan.wb$scale

> theta.control<-exp(-gehan.wb$coefficients[1]-gehan.wb$coefficients[2])

> theta.6MP<-exp(-gehan.wb$coefficients[1])

>

> curve(expr = exp(-(theta.control*x)^alpha), from = 0, to = 35, add = TRUE, lty=4)

> curve(expr = exp(-(theta.6MP*x)^alpha), from = 0, to = 35, add = TRUE, lty = 4)

>

> legend("topright", lty = c(1,2,1,2,4,4), col = c(1,1,8,8,1,1),

+ legend = c("Control - Cox","6-MP - Cox","Control - KM",

+ "6-MP - KM","Control - WB","6-MP - WB"),

+ cex = 0.6)
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7.12.2 Example: Weibull ART model for the leuk data

The R code below fits a Weibull ART model with a dummy variable for treatment.

> leuk.wb <- survreg(Surv(time)~ag + log(wbc), data = leuk)

> summary(leuk.wb)

Call:

survreg(formula = Surv(time) ~ ag + log(wbc), data = leuk)

Value Std. Error z p

(Intercept) 5.8524 1.3227 4.42 9.7e-06

agpresent 1.0206 0.3781 2.70 0.0069

log(wbc) -0.3103 0.1313 -2.36 0.0181

Log(scale) 0.0399 0.1392 0.29 0.7745

Scale= 1.04

Weibull distribution

Loglik(model)= -146.5 Loglik(intercept only)= -153.6

Chisq= 14.18 on 2 degrees of freedom, p= 0.00084
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Number of Newton-Raphson Iterations: 6

n= 33
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Chapter 8

Multistate Survival Models

Our survival models in Chapters 1 to 7 have assumed that survival (time-to-failure) of each unit is an

observation of a random variable T , and our survival models have been stochastic (probability) models

describing the distribution of T .

An alternative approach is to model the variable Yt representing the status (alive or dead) of a unit at time

t.

A probability model for a time-indexed variable (one which changes over time) is a stochastic process.

Survival is a simple stochastic process where, at time t = 0, Y0 = 1 (alive) and then the process remains

in state 1 unless at some value of t a transition to Yt = 2 (dead) is made after which the process remains

in state 2.

8.1 State space

The set of possible values that a stochastic process Yt can take over time t is called its state space, S.
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In the simple survival model S = {alive, dead} or S = {1, 2}.

This is an example of a discrete state space, and in this module we will restrict consideration to discrete

state spaces with a small number of possible states.

The simple survival state space can be represented as:

The arrow indicates that transition is possible only in one direction.

In this case the state dead is called an absorbing state.

8.2 Multi-state models

Stochastic processes allow us to model richer survival time processes than simply two-state alive/dead

processes with an absorbing (dead) state.

Two such examples are:
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General two-state model (no absorbing states)

Multiple decrement (absorbing state) model
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8.3 Markov processes

A Markov process model for Yt is one where the future is conditionally independent of the history of the

process given the current state. For example, tomorrow’s weather only depends on today’s weather, and

is independent on all weather before today.

Hence, a Markov process can be specified by transition probabilities

P (Yx+t = j |Yx = i) ≡ pij(x, t), j ∈ S

for any present time x, future time x + t and present state i. This makes explicit that the probability, at

time x, of future realisations of the process depends only on the current state Yx, and not on the history

of Y (its values in the period [0, t)).

For a time-homogeneous Markov process, the transition probabilities do not depend on the value of x, so

we can write

P (Yx+t = j |Yx = i) = pij(t).

8.4 Transition intensity

The transition intensity function µij(x) is defined as

µij(x) = lim
δt→0

pij(x, δt)

δt
i 6= j.

It follows that

pij(x, δt) = µij(x)δt+ o(δt) i 6= j.

We define

µii(x) = −
∑
j 6=i

µij(x)
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so that

pii(x, δt) = 1 + µii(x)δt+ o(δt) i 6= j.

For any transition i→ j which is prohibited (e.g. dead→ alive), µij = 0.

For a homogenous process, transition intensity µij(x) does not depend on x, i.e. it is written µij.

8.5 Chapman-Kolmogorov equations: solving a Markov process

for pij(x, t)

The transition intensity function µij(x) (or just µij for a time-homogeneous process) provides an efficient

representation of the process.

How are the transition probabilities pij(x, t) obtained from the transition intensities µij(x)?

We need to derive the Kolmogorov forward equations, the solution to which are the required transition

probabilities pij(x, t).

For any times x, s, t ≥ 0 and states i, j, k ∈ S, we have

P (Yx+s+t = j, Yx+s = k |Yx = i)

= P (Yx+s+t = j |Yx+s = k, Yx = i)P (Yx+s = k |Yx = i)

= P (Yx+s+t = j |Yx+s = k)P (Yx+s = k |Yx = i)
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Hence

P (Yx+s+t = j |Yx = i)

=
∑
k∈S

P (Yx+s+t = j, Yx+s = k |Yx = i)

=
∑
k∈S

P (Yx+s+t = j |Yx+s = k)P (Yx+s = k |Yx = i)

or

pij(x, s+ t) =
∑
k∈S

pik(x, s)pkj(x+ s, t) i, j ∈ S

These are the Chapman-Kolmogorov equations.

Suppose that there are m states in S, labelled 1, . . . ,m.

For a Markov process, we define the transition matrix between times x and x+ t to be the matrix

P (x, t) =



p11(x, t) p12(x, t) · · · p1m(x, t)

p21(x, t) p22(x, t) · · · p2m(x, t)

...
...

...

pm1(x, t) pm2(x, t) · · · pmm(x, t)


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The Chapman-Kolmogorov equations can be written as

P (x, s+ t) = P (x, s)P (x+ s, t)

For a time-homogeneous process, we can drop the first argument x in the above.

The Chapman-Kolmogorov equations give

pij(x, t+ δt) =
∑
k∈S

pik(x, t)pkj(x+ t, δt) i, j ∈ S

which implies that

pij(x, t+ δt)− pij(x, t)
δt

=
∑
k∈S

pik(x, t)
pkj(x+ t, δt)

δt
− pij(x, t)

δt

=
∑
k 6=j

pik(x, t)
pkj(x+ t, δt)

δt
− pij(x, t)

1− pjj(x+ t, δt)

δt
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In the limit δt→ 0, we have

d

dt
pij(x, t) =

∑
k 6=j

pik(x, t)µkj(x+ t) + pij(x, t)µjj(x+ t)

=
∑
k∈S

pik(x, t)µkj(x+ t) i, j ∈ S

These are the Kolmogorov forward equations, which are a set of differential equations for pij(x, t).

They can be written in matrix form as d
dt
P (x, t) = P (x, t)M(x+ t) where M(x) is the transition intensity

matrix

M(x) =



µ11(x) µ12(x) · · · µ1m(x)

µ21(x) µ22(x) · · · µ2m(x)

...
...

...

µm1(x) µm2(x) · · · µmm(x)



8.6 The holding time distribution

Consider a unit in state i at time x. The holding time Txi is the random variable indicating the length of
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the time interval between x and the next transition to any other state. We have

P (Txi ≤ t+ δt |Txi ≥ t) = P (Yx+t+δt 6= i |Y[x,x+t] = i)

= 1− P (Yx+t+δt = i |Yx+t = i)

and therefore

P (Txi ≤ t+ δt |Txi ≥ t)

δt
=

1− P (Yx+t+δt = i |Yx+t = i)

δt

Taking the limit as δt→ 0, we have

hxi(t) = −µii(x+ t) =
∑
i 6=j

µij(x+ t).

where hxi is the hazard function for the holding time variable Txi.

The hazard function hxi(t) can be transformed to a survival function in the usual way, so we have

Sxi(t) = exp

(
−
∫ t

0

hxi(t)dt

)
= exp

(∫ t

0

µii(x+ t)dt

)

= exp

(
−
∫ t

0

∑
i 6=j

µij(x+ t)dt

)

For a time-homogeneous Markov process, all µij(x) are constant (independent of x) so we have hxi(t) =
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−µii =
∑

j 6=i µij, a constant hazard. Hence,

Sxi(t) = exp (µiit) = exp

(
−t
∑
j 6=i

µij

)

and the holding time distribution is exponential, with rate
∑

i 6=j µij.

8.7 Conditional transition probability

Conditional on a transition being made from state i at time x+ t, what is the probability that transition

is made to state j for each j 6= i?

P (transition from i to j at x+ t | transition from i at x+ t)

= lim
δt→0

P (Yx+t+δt = j | Yx+t+δt 6= i and Yx+t = i)

= lim
δt→0

P (Yx+t+δt = j | Yx+t = i)

P (Yx+t+δt 6= i | Yx+t = i)

= lim
δt→0

µij(x+ t)δt+ o(δt)∑
k 6=i µik(x+ t)δt+ o(δt)

=
µij(x+ t)∑
k 6=i µik(x+ t)

For a time-homogeneous Markov process, all µij(x) are constant (independent of x) so this becomes
µij∑
k 6=i µik

.
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8.8 Examples

8.8.1 Two-state model (absorbing state)

Any two-state process is determined by the transition intensities between the two states, µ12(x) and µ21(x).

As state 2 is absorbing,

p21(x, t) = 0 for all x, t ⇒ µ21(x) = 0 for all x

Hence the transition intensity matrix is given by

M(x) =


−µ12(x) µ12(x)

0 0


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We have

p21(x, t) = 0 for all x, t ⇒ p22(x, t) = 1 for all x, t

To completely determine the transition structure for the process, all that remains is to solve the Kolmogorov

forward equation for either p11(x, t) or p12(x, t), and then obtain the other using

p11(x, t) + p12(x, t) = 1

For completeness, we shall solve both and show that they give equivalent results.

The Kolmogorov forward equation for p11(x, t) is

d

dt
p11(x, t) = p11(x, t)µ11(x+ t) + p12(x, t)µ21(x+ t)

= −p11(x, t)µ12(x+ t)
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So

∫
dp11(x, t)

p11(x, t)
= −

∫ t

0

µ12(x+ t)dt

⇒ log p11(x, t) = −
∫ t

0

µ12(x+ t)dt+ C

⇒ p11(x, t) = A exp

(
−
∫ t

0

µ12(x+ t)dt

)

⇒ p11(x, t) = exp

(
−
∫ t

0

µ12(x+ t)dt

)

because we have the boundary condition p11(x, 0) = 1.

The Kolmogorov forward equation for p12(x, t) is

d

dt
p12(x, t) = p11(x, t)µ12(x+ t) + p12(x, t)µ22(x+ t)

= p11(x, t)µ12(x+ t)

= [1− p12(x, t)]µ12(x+ t)

93



So

∫
dp12(x, t)

1− p12(x, t)
=

∫ t

0

µ12(x+ t)dt

⇒ − log[1− p12(x, t)] =

∫ t

0

µ12(x+ t)dt+ C

⇒ 1− p12(x, t) = A exp

(
−
∫ t

0

µ12(x+ t)dt

)

⇒ p12(x, t) = 1− exp

(
−
∫ t

0

µ12(x+ t)dt

)

because we have the boundary condition p12(x, 0) = 0.

Clearly, the two solutions are equivalent, as we have

p11(x, t) = exp

(
−
∫ t

0

µ12(x+ t)dt

)
= 1− p12(x, t).

We also note that if we define Tx to be the random variable representing the time (from x) in the alive

state (1) before death (transition to state 2), then

STx(t) = p11(x, t)

because for this state space, being in state 1 at time x + t is equivalent to holding in state 1 throughout

the interval [x, x+ t].
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It follows from the solution for p11(x, t) above that

hTx(t) = − d

dt
logSTx(t) = − d

dt
log p11(x, t) = µ12(x+ t)

so the transition intensity plays the role of the hazard function for the variable representing the time spent

in the alive state (1).

8.8.2 Two-state model (no absorbing state)

As in the first example, this is a two-state process, so is determined by the transition intensities between

the two states, µ12(x) and µ21(x).
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However, neither state is absorbing, so the transition intensity matrix is given by

M(x) =


−µ12(x) µ12(x)

µ21(x) −µ21(x)



To completely determine the transition structure for the process, we need to solve for p11(x, t) (or p12(x, t))

and p21(x, t) (or p22(x, t))

The Kolmogorov forward equation for p11(x, t) is

d

dt
p11(x, t) = p11(x, t)µ11(x+ t) + p12(x, t)µ21(x+ t)

= −p11(x, t)µ12(x+ t) + [1− p11(x, t)]µ21(x+ t)

= −p11(x, t)[µ12(x+ t) + µ21(x+ t)] + µ21(x+ t)

Similarly, the Kolmogorov forward equation for p22(x, t) is

d

dt
p22(x, t) = −p22(x, t)[µ12(x+ t) + µ21(x+ t)] + µ12(x+ t)

The existence of an analytic solution to these equations depends on the form of the transition intensity

functions µ12(x) and µ21(x).
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We restrict attention to the time-homogeneous case where

µ12(x) = µ12 and µ21(x) = µ21

independent of x.

The Kolmogorov forward equation for p11(x, t) is now

d

dt
p11(x, t) = −p11(x, t)[µ12 + µ21] + µ21

⇒
∫

dp11(x, t)

p11(x, t)[µ12 + µ21]− µ21

= −
∫

dt

⇒ log{p11(x, t)[µ12 + µ21]− µ21}
µ12 + µ21

= −t+ C

⇒ p11(x, t)[µ12 + µ21]− µ21 = A exp (−[µ12 + µ21]t)

⇒ p11(x, t) =
A exp (−[µ12 + µ21]t) + µ21

µ12 + µ21

⇒ p11(x, t) =
µ12 exp (−[µ12 + µ21]t) + µ21

µ12 + µ21

because we have the boundary condition p11(x, 0) = 1.
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Similarly, the Kolmogorov forward equation for p22(x, t) is solved by

p22(x, t) =
µ21 exp (−[µ12 + µ21]t) + µ12

µ21 + µ12

and we also obtain, using the identities p11(x, t) + p12(x, t) = 1 and p21(x, t) + p22(x, t) = 1,

p12(x, t) =
µ12{1− exp (−[µ12 + µ21]t)}

µ12 + µ21

and

p21(x, t) =
µ21{1− exp (−[µ12 + µ21]t)}

µ21 + µ12

Note that, as t→∞

pi1(x, t)→
µ21

µ21 + µ12

and pi2(x, t)→
µ12

µ12 + µ21

for i = 1, 2, so the final state becomes independent of the initial state.

Note that, in this model, the survivor function for the holding time random variables Tx1 (state 1) and Tx2

(state 2) are

Sx1(t) = exp(−µ12t) and Sx2(t) = exp(−µ21t)
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and that

Sx1(t) 6= p11(x, t) and Sx2(t) 6= p22(x, t)

because this model allows transition out of a state and then return at a later time.

8.8.3 Four-state process

This four-state process is determined by the transition intensities, µij(x) i 6= j.

As states 2,3,4 are absorbing,

pij(x, t) = 0 for all x, t, i > 1, j 6= i ⇒ µij(x) = 0 for all x, i > 1, j 6= i
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Hence the transition intensity matrix is given by

M(x) =



−µ12(x)− µ13(x)− µ14(x) µ12(x) µ13(x) µ14(x)

0 0 0 0

0 0 0 0

0 0 0 0



To completely determine the transition structure for the process, we need to solve the Kolmogorov forward

equation for three of {p11(x, t), p12(x, t), p13(x, t), p14(x, t)}, and then obtain the other using

p11(x, t) + p12(x, t) + p13(x, t) + p14(x, t) = 1.

The Kolmogorov forward equation for p11(x, t) is

d

dt
p11(x, t) = p11(x, t)µ11(x+ t) + p12(x, t)µ21(x+ t)

+p13(x, t)µ31(x+ t) + p14(x, t)µ41(x+ t)

= p11(x, t)µ11(x+ t)
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So

∫
dp11(x, t)

p11(x, t)
= −

∫ t

0

[µ12(x+ t) + µ13(x+ t) + µ14(x+ t)]dt

⇒ log p11(x, t) = −
∫ t

0

[µ12(x+ t) + µ13(x+ t) + µ14(x+ t)]dt+ C

⇒ p11(x, t) = A exp

(
−
∫ t

0

[µ12(x+ t) + µ13(x+ t) + µ14(x+ t)]dt

)

⇒ p11(x, t) = exp

(
−
∫ t

0

[µ12(x+ t) + µ13(x+ t) + µ14(x+ t)]dt

)

because we have the boundary condition p11(x, 0) = 1.

The Kolmogorov forward equation for p12(x, t) is

d

dt
p12(x, t) = p11(x, t)µ12(x+ t) + p12(x, t)µ22(x+ t)

+p13(x, t)µ32(x+ t) + p14(x, t)µ42(x+ t)

= p11(x, t)µ12(x+ t)

= µ12(x+ t)×

exp

(
−
∫ t

0

[µ12(x+ t) + µ13(x+ t) + µ14(x+ t)]dt

)
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Similarly, for j = 2, 3, 4, we have

d

dt
p1j(x, t) = µ1j(x+ t)×

exp

(
−
∫ t

0

[µ12(x+ t) + µ13(x+ t) + µ14(x+ t)]dt

)

The existence of an analytic solution to the differential equations for p2j(x, t), p3j(x, t) and p4j(x, t), depends

on the form of the intensity functions µ12(x) and µ13(x) and µ14(x)

We restrict attention to the time-homogeneous case where

µ12(x) = µ12 µ13(x) = µ13 µ14(x) = µ214

independent of x.

It immediately follows that

p11(x, t) = exp

(
−
∫ t

0

[µ12(x+ t) + µ13(x+ t) + µ14(x+ t)]dt

)

= exp (−t[µ12 + µ13 + µ14])
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Then, for j > 1,

d

dt
p1j(x, t) = µ1j exp (−t[µ12 + µ13 + µ14])

⇒ p1j(x, t) = C − µ1j

µ12 + µ13 + µ14

exp (−t[µ12 + µ13 + µ14])

⇒ p1j(x, t) =
µ1j

µ12 + µ13 + µ14

{1− exp (−t[µ12 + µ13 + µ14])}

because we have the boundary condition p1j(x, 0) = 0, j > 1.

It is easy to verify that

p11(x, t) + p12(x, t) + p13(x, t) + p14(x, t) = 1.
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Chapter 9

Inference for Multistate Models

In Chapter 8 we have introduced multistate models and their properties, and presented several examples

of models with possible applications to survival data analysis.

A key part of the statistical analysis process is making inference about the parameters of the model, on

the basis of observed data.

For a multistate model, with states 1, . . . ,m the parameters are the transition intensity functions

µk`(x), i, j = 1, . . . ,m, k 6= `

We will only consider time-homogenous models, so the parameters to be estimated are the transition

intensities

µk`, i, j = 1, . . . ,m, k 6= `

9.1 Data

For a multistate model, the data will be the transition histories of a set of individuals i = 1, . . . , n. We

start by considering the case n = 1

In this case, we might observe something like:

Transition Start 1 2 3 4 5 6 7 8 9 10 11 End

Time 0.3 0.32 0.41 0.56 0.82 0.84 1.31 1.41 1.55 1.79 2.04 2.24 2.8

State 2 1 3 4 1 2 1 3 2 3 1 2 2
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

9.2 Data structure

We will denote the data observations using

Transition (j) 0 1 2 · · · j · · · J J + 1 (end)

Time (tj) t0 t1 t2 · · · tj · · · tJ tJ+1

State (yj) y0 y1 y2 · · · yj · · · yJ

The likelihood for the transition intensity parameters µ = {µk`, k 6= `} is the probability of the observed

105



sequence of holding times and transitions, given µ, that is

L(µ) = fy0(t1 − t0)p(y1|y0) × fy1(t2 − t1)p(y2|y1) × · · ·

× fyJ−1
(tJ − tJ−1)p(yJ |yJ−1) × SyJ (tJ+1 − tJ)

where

• fk(t) is the exponential p.d.f. of the holding time t in state k

• p(`|k) is the conditional probability of transition from state k to state ` given that a transition has

happened

9.3 Likelihood

We have

L(µ) = fy0(t1 − t0)p(y1|y0) × fy1(t2 − t1)p(y2|y1) × · · ·

× fyJ−1
(tJ − tJ−1)p(yJ |yJ−1) × SyJ (tJ+1 − tJ)

= SyJ (tJ+1 − tJ)
J∏
j=1

fyj−1
(tj − tj−1)p(yj|yj−1)
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where

fk(t) =
∑
` 6=k

µk` exp

(
−t
∑
` 6=k

µk`

)

Sk(t) = exp

(
−t
∑
`6=k

µk`

)

p(`|k) =
µk`∑
`6=k µk`

Hence

L(µ) = SyJ (tJ+1 − tJ)
J∏
j=1

fyj−1
(tj − tj−1)p(yj|yj−1)

= exp

(
−(tJ+1 − tJ)

∑
` 6=yJ

µyJ `

)

×
J∏
j=1

exp

−(tj − tj−1)
∑
`6=yj−1

µyj−1`

µyj−1yj

=
J+1∏
j=1

exp

−(tj − tj−1)
∑
`6=yj−1

µyj−1`

 J∏
j=1

µyj−1yj

=
J+1∏
j=1

∏
` 6=yj−1

exp
{
−(tj − tj−1)µyj−1`

} J∏
j=1

µyj−1yj

So the likelihood factorises into a series of terms, each containing a single transition intensity µk`.
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Gathering together all the terms containing a particular µk`, we obtain

L(µk`) = µnk`k`

J+1∏
j:yj−1=k

exp {−(tj − tj−1)µk`}

= µnk`k` exp
(
−t+k µk`

)

where

• t+k is the total observed holding time in state k

• nk` is the total observed number of transitions from state k to state `

are called sufficient statistics.

Therefore the likelihood for the full set of transition intensity parameters µ = {µk`, k 6= `} for a single

individual transition history is

L(µ) =
∏

k,`:k 6=`

µnk`k` exp
(
−t+k µk`

)

9.4 Maximum likelihood estimation for µ
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The log likelihood is

`(µ) =
∑
k,`:k 6=`

nk` log µk` −
∑
k,`:k 6=`

t+k µk`

and therefore

∂

∂µk`
`(µ) =

nk`
µk`
− t+k

so the m.l.e. solves

nk`
µ̂k`
− t+k = 0 ⇒ µ̂k` =

nk`
t+k

9.5 Standard errors for µ̂

The second derivatives of the log likelihood are

∂2

∂µ2
k`

`(µ) = −nk`
µ2
k`

and all other second derivatives, ∂2

∂µk`∂µij
`(µ), are zero.

Therefore, we have that the m.l.e.s are approximately independent (in large samples) and

V ar (µ̂k`) =
µ2
k`

nk`
⇒ s.e. (µ̂k`) =

µ̂k`

n
1/2
k`
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so confidence intervals for the transition intensities can be easily constructed, based on the large sample

normal distribution of the m.l.e.

9.6 Example

Transition Start 1 2 3 4 5 6 7 8 9 10 11 End

Time 0.3 0.32 0.41 0.56 0.82 0.84 1.31 1.41 1.55 1.79 2.04 2.24 2.8

State 2 1 3 4 1 2 1 3 2 3 1 2 2

t

S
ta

te

1

2

3

4

0.0 0.5 1.0 1.5 2.0 2.5 3.0

t+1 = 0.41 t+2 = 1.29 t+3 = 0.54 t+4 = 0.26
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[nk`] =



− 2 2 0

2 − 1 0

1 1 − 1

1 0 0 −



[µ̂k`] =



− 2
0.41

2
0.41

0

2
1.29

− 1
1.29

0

1
0.54

1
0.54

− 1
0.54

1
0.26

0 0 −



=



− 4.88 4.88 0

1.55 − 0.78 0

1.85 1.85 − 1.85

3.85 0 0 −



[s.e.(µ̂k`)]) =



− 3.45 3.45 0

1.10 − 0.78 0

1.85 1.85 − 1.85

3.85 0 0 −



9.7 Multiple sequences (n > 1)

In practice, we will observe multiple histories of transitions corresponding to individuals i = 1, . . . , n in

our data sample, with corresponding transition frequencies [nik`] and holding times {t+ik}.
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We make the standard assumption that the n observed histories are realizations of independent random

processes, so the full likelihood (joint probability) is obtained by multiplying the individual likelihoods:

L(µ) =
n∏
i=1

∏
k,`:k 6=`

µnik`k` exp
(
−t+ikµk`

)
=

∏
k,`:k 6=`

µnk`k` exp
(
−t+k µk`

)

where now

• t+k is the total observed holding time in state k across all individuals

• nk` is the total observed number of transitions from state k to state ` across all individuals

Inference proceeds exactly as Sections 9.4 and 9.5 with these new sufficient statistics.
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Chapter 10

Modelling Human Lifetime

For the rest of this module our focus will be on modeling human life length, that is the time (from birth

or some other specified time origin) to death in a specified human population.

Models for human human lifetimes have a huge importance, for example

• Billions of pounds are invested in pension funds. Calculation of the liabilities requires us to be able

to predict lifetimes of current and future pensioners.

• Planning public services requires requires us to predict age-structured populations, sometimes within

a small geographical area. This requires us to be able to forecast mortality (along with fertility and

migration)

10.1 Special features of human lifetime

There are a number of practical reasons why human lifetime modelling requires special treatment:

• The long time scales involved (much longer than the horizon of a standard statistical study)

• The requirement to use secondary data (collected for other purposes, such as census and death

registration data)

• Data sets are often large (good!) but the data can be coarse (bad!) For example, ages may only be

provided in whole years.

• Standard distributions tend not to provide a good fit for human lifetimes.

• The distribution of human lifetime is changing (lifetimes are getting longer)
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10.2 Models

As previously, we use T to denote the time from a specified origin (usually birth) until death.

Then we know that a survival model can be specified by the survival function ST (t) or the hazard function

hT (t) for T .

Alternatively, we can think of human survival as a two-state process for Yx ∈ {1, 2} (alive/dead) with an

absorbing state

Then the process is specified by the transition intensity function µ12(x) at time x or alternatively the

transition probabilities p11(x, t) = 1− p12(x, t).

10.3 Models are equivalent
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Recall that

p11(x, t) = P (Yx+t = 1 |Yx = 1) = P (T > x+ t |T > x)

= ST (t|x)

=
ST (x+ t)

ST (x)

where ST (t|x) is the residual survival function (see Section 3.3.2). So p11(0, t) = ST (t)

Similarly

µ12(x) = lim
δt→0

p12(x, δt)

δt
= lim

δt→0

P (T ≤ x+ δt |T > x)

δt
= hT (x)

So the models are equivalently specified.

10.4 Alternative notation

Because of the importance of human lifetime modelling in demography and actuarial science, a specific

notation has been developed:

p11(x, t) = ST (t|x) ≡ tpx
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and

p12(x, t) = 1− ST (t|x) = 1− tpx ≡ tqx

so

• tqx is the probability of death in (x, x+ t] given survival to age x

• tpx is probability of probability of survival to x+ t given survival to age x.

10.5 px and qx notation

When t = 1, the first subscript is usually omitted, so

• qx is the probability of death in (x, x+ 1] given survival to age x

• px = 1− qx is probability of probability of survival to x+ 1 given survival to age x.

This is most commonly used when x is an exact integer number of years.
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Note that if t is an integer then

tpx =
ST (x+ t)

ST (x)

=
ST (x+ 1)

ST (x)

ST (x+ 2)

ST (x+ 1)
· · · ST (x+ t)

ST (x+ t− 1)

= pxpx+1 · · · px+t−1

and so

tqx = 1− (1− qx)(1− qx+1) · · · (1− qx+t−1).

10.6 Force of mortality

We also have:

µ12(x) = hT (x) ≡ µx

which is called (in human lifetime applications) the force of mortality at age x.

The force of mortality µx is the limiting death rate at age x, and as such is only constrained by µx ≥ 0.

In practice, if we are measuring time in years, µx < 1 for all except very extreme ages x.
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The functions tpx, tqx and µx are related by

tpx = 1− tqx = exp

(
−
∫ x+t

x

µxdx

)
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Chapter 11

The Life Table and Life Expectancy

11.1 Life tables

The distribution of lifetime for a population is often summarised in a life table.

Excerpt for males:

English(Life(Tables(No(17(

Period expectation of life
Based on data for England and Wales for the years 2010-2012

Age Age
x mx qx lx dx Lx Tx µx ex x mx qx lx dx Lx Tx µx ex

0 0.004757 0.004746 100000 475 99576.3 7896837 78.97 0 0.003818 0.003811 100000 381 99660.7 8279504 82.80
1 0.000306 0.000306 99525 30 99510.2 7797072 0.000369 78.34 1 0.000238 0.000238 99619 24 99607.0 8179692 0.000276 82.11
2 0.000207 0.000207 99495 21 99484.6 7697562 0.000246 77.37 2 0.000176 0.000176 99595 17 99586.4 8080086 0.000202 81.13
3 0.000147 0.000147 99474 14 99467.0 7598078 0.000172 76.38 3 0.000133 0.000133 99578 14 99571.0 7980500 0.000152 80.14
4 0.000115 0.000115 99460 12 99453.9 7498612 0.000128 75.39 4 0.000107 0.000107 99564 10 99559.1 7880929 0.000118 79.15

109 0.676172 0.491440 8 4 5.5 11 0.661588 1.43 109 0.668760 0.487656 27 13 20.0 39 0.652973 1.44
110 0.701065 0.503943 4 2 2.8 5 0.685990 1.39 110 0.697334 0.502089 14 7 10.1 19 0.681051 1.39
111 0.725677 0.516003 2 1 1.4 3 0.709972 1.34 111 0.724789 0.515573 7 4 5.0 9 0.708358 1.34
112 0.750015 0.528125 1 1 0.7 1 0.733841 1.30 112 0.751040 0.528125 3 1 2.4 4 0.734218 1.30
113 113 0.776042 0.539776 2 1 1.1 2 0.758668 1.26
114 114 0.799785 0.550574 1 1 0.5 1 0.781684 1.23

Males Females

Excerpt for females:

English(Life(Tables(No(17(

Period expectation of life
Based on data for England and Wales for the years 2010-2012

Age Age
x mx qx lx dx Lx Tx µx ex x mx qx lx dx Lx Tx µx ex

0 0.004757 0.004746 100000 475 99576.3 7896837 78.97 0 0.003818 0.003811 100000 381 99660.7 8279504 82.80
1 0.000306 0.000306 99525 30 99510.2 7797072 0.000369 78.34 1 0.000238 0.000238 99619 24 99607.0 8179692 0.000276 82.11
2 0.000207 0.000207 99495 21 99484.6 7697562 0.000246 77.37 2 0.000176 0.000176 99595 17 99586.4 8080086 0.000202 81.13
3 0.000147 0.000147 99474 14 99467.0 7598078 0.000172 76.38 3 0.000133 0.000133 99578 14 99571.0 7980500 0.000152 80.14
4 0.000115 0.000115 99460 12 99453.9 7498612 0.000128 75.39 4 0.000107 0.000107 99564 10 99559.1 7880929 0.000118 79.15

109 0.676172 0.491440 8 4 5.5 11 0.661588 1.43 109 0.668760 0.487656 27 13 20.0 39 0.652973 1.44
110 0.701065 0.503943 4 2 2.8 5 0.685990 1.39 110 0.697334 0.502089 14 7 10.1 19 0.681051 1.39
111 0.725677 0.516003 2 1 1.4 3 0.709972 1.34 111 0.724789 0.515573 7 4 5.0 9 0.708358 1.34
112 0.750015 0.528125 1 1 0.7 1 0.733841 1.30 112 0.751040 0.528125 3 1 2.4 4 0.734218 1.30
113 113 0.776042 0.539776 2 1 1.1 2 0.758668 1.26
114 114 0.799785 0.550574 1 1 0.5 1 0.781684 1.23

Males Females

This is ELT17, the latest decennial life table for England, available at:

http://www.ons.gov.uk/ons/rel/lifetables/decennial-life-tables/

english-life-tables--no-17--2010-12/stb-elt17.html

11.2 The life table quantities `x, qx and dx

The life table summarises the distribution of a lifetime variable by presenting the function `x for a set of

discrete values x.
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The number `0 is called the radix for the table, and

`x = E[number of survivors to exact age x

from an initial population of size `0]

= `0P (T > x)

= `0ST (x)

So `x/`0 is simply the survival function ST (x) or xp0.

• The radix is usually a power of 10, such as 10 000 or 100 000

• The x values are usually evenly spaced but need not be every year, for example every 5 years or every

10 years.

The life table usually contains a column with qx values.

If the gap between the ages x is 1 year, then qx is exactly as defined in Section 10.5, that is

qx = P (T ≤ x+ 1|T > x) = 1− ST (1|x)

= 1− ST (x+ 1)

ST (x)
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It follows that there is a simple relationship between {`x} and {qx}, as

qx = 1− ST (x+ 1)

ST (x)
= 1− `x+1

`x

and

`x+1 = `x(1− qx) = `0

x∏
k=0

(1− qk)

If the gap between the x values is g > 1 year, the the qx should be replaced by gqx so that these relationships

still hold.

The life table usually contains a column with dx values.

dx = E[number of deaths in [x, x+ 1)

from an initial population of size `0]

= `0P (x ≤ T < x+ 1)

= `0[ST (x)− ST (x+ 1)]

= `x − `x+1
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11.3 Life expectancy

The complete life expectancy at age x,
◦
ex is defined as the expected future lifetime given survival to age x,

◦
ex = E(T − x |T > x)

The curtate life expectancy at age x, ex is defined as the expected future lifetime in completed years given

survival to age x (usually an integer),

ex = E([T − x] |T > x)

=
∞∑
k=0

kP (x+ k ≤ T < x+ k + 1 |T > x)

=
∞∑
k=0

k[ST (k|x)− ST (k + 1|x)]

=
∞∑
k=0

k
ST (x+ k)− ST (x+ k + 1)

ST (x)

11.3.1 Obtaining ex from the life table
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If x is an integer, then

ex =
∞∑
k=0

k
ST (x+ k)− ST (x+ k + 1)

ST (x)

=
∞∑
k=0

k
`x+k − `x+k+1

`x

=
1

`x

∞∑
k=0

k(`x+k − `x+k+1)

=
1

`x

∞∑
k=1

`x+k

In practice, we only need to sum up until `x+k ≈ 0 (typically around x+ k = 120).

11.3.2 Obtaining
◦
ex from ex

The complete expectation of life
◦
ex includes fractional parts of a year between an individuals last birthday

(the death age for the purposes of calculation of ex) and the actual date of death. Hence

ex ≤
◦
ex < ex + 1.

If we make the assumption that, in every age interval [x, x+ 1), deaths are uniformly distributed, then we
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have

◦
ex = ex +

1

2
.

This gives a reasonable approximation to
◦
ex which can then be computed using life table data.

However, in cases where the x values are not evenly spaced, or when the assumption that deaths are evenly

distributed over [x, x+1) is unreasonable (for example in the first year of life) then an alternative approach

is required to compute
◦
ex.

11.3.3 Obtaining
◦
ex from an irregular life table

We have

◦
ex = E(T − x|T > x) =

∫ ∞
0

ST (t|x)dt

=

∫ ∞
0

ST (x+ t)

ST (x)
dt

=
1

`x

∫ ∞
0

`0ST (x+ t)dt

=
1

`x

∫ ∞
x

`0ST (t)dt

=
1

`x

∑
i=1

∫ xi

xi−1

`0ST (t)dt

124



where x = x0 < x1 < x2 · · · are the ages ≥ x represented in the life table.

11.3.4 Expectation of life in an interval

Define sLx to be the expected total years lived between ages x and x + s by an initial population of size

`0. Then

sLx = ∞Lx − ∞Lx+s

where

∞Lx = `0P (T > x)
◦
ex = `0

`x
`0

1

`x

∫ ∞
x

`0ST (t)dt =

∫ ∞
x

`0ST (t)dt.

Therefore,

sLx =

∫ x+s

x

`0ST (t)dt

The quantity ∞Lx, the expected total years lived after age x by an initial population of size `0, is usually

denoted by Tx.

11.3.5 Life expectancy using Lx and/or Tx

It follows from Section 11.3.3 and 11.3.4 that life expectancy at birth is
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◦
ex =

1

`x

∫ ∞
x

`0ST (t)dt =
Tx
`x

=
1

`x

∑
i=1

∫ xi

xi−1

`0ST (t)dt =
1

`x

∑
i=1

xi−xi−1
Lxi−1

When t = 1, tLx is simply denoted by Lx.

Therefore, for a life table with annual spacing, x0 = x, x1 = x+ 1, . . ., we have

◦
ex =

Tx
`x

=
1

`x

∑
t=0

Lx+t

Life tables often present values of Tx and/or Lx.

11.3.6 The trapezium rule approximation

To obtain
◦
ex, we need to approximate xi−xi−1

Lxi−1
=
∫ xi
xi−1

`0ST (t)dt where the only relevant values of the

integrand that we know are at the endpoints:

`0ST (xi−1) = `xi−1
and `0ST (xi) = `xi
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We use the trapezium rule approximation:

xi−xi−1
Lxi−1

=

∫ xi

xi−1

`0ST (t)dt ≈ (xi − xi−1)
`xi + `xi−1

2

so, when xi − xi−1 = 1 for all i, we have Lx ≈ (`x+1 + `x)/2 which gives the expression in Section 11.3.2

when substituted into
◦
ex = 1

`x

∑
t=0 Lx+t.

11.4 Concluding remarks

11.4.1 Period life tables

The life table ELT17 in Section 11.1 is a period life table.

That means that the table was constructed by estimating qx from mortality data over a particular period

in time (here 2010-2012).
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• q21 is estimated using individuals born around 1990

• q81 is estimated using individuals born around 1930

etc.

So the table does not actually describe the distribution of lifetime of any actual individual or group of

individuals.

• Individuals born around 1990 will expect to experience a different (lower?) q81 in 2071

• Individuals born around 1930 experienced a higher q21 in 1951

11.4.2 Cohort life tables

A life table describing the mortality experience of a particular population, as it develops over time is called

a cohort life table.

A cohort is the name given to a population all born at or around the same time (typically in the same

calendar year).

The cohort life table estimates qx based on the mortality experience of the cohort at that age.

The problem with a cohort life table is that it cannot be completed until the cohort have died out, by

which point it is only really of interest to historians!
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Chapter 12

Interpolating a Life Table

The life table only includes values of `x and qx and hence ST (x) for certain, usually evenly spaced integer,

values of x.

We can ‘fill in the gaps’ by interpolating, but this requires us to make assumptions about the distribution

of lifetime T in the intervals between ages represented in the life table.

We shall initially assume that the rows of the life table represent x = 0, 1, 2, 3, . . .. The generalisation to

other intervals is straightforward.

At age x+ t, where t ∈ [0, 1) we have

`x+t = `0ST (x+ t) = `0P (T > x+ t|T > x)P (T > x) = tpx `x

So completion of the life table requires us to specify our belief about tpx (or equivalently tqx) for t ∈ [0, 1).

12.1 Uniform distribution of deaths

Perhaps the easiest assumption is to assume that the deaths in [x, x+ 1) are uniformly distributed. Then

P (T ≤ x+ t|x ≤ T < x+ 1) = t t ∈ [0, 1)
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Hence

tqx = P (T ≤ x+ t|T ≥ x)

= P (T ≤ x+ t|x ≤ T < x+ 1)P (T < x+ 1|T ≥ x)

= tqx

So

`x+t = `x(1− tqx) t ∈ [0, 1)

which is the linear interpolation which makes the trapezium rule approximation, used in the calculation of

life expectancy, exact.

12.2 Constant force of mortality

An alternative assumption is to assume that the force of mortality (hazard of death) µx takes a constant

value µ in [x, x+ 1). Then

tqx = P (T ≤ x+ t|T ≥ x) = 1− exp(−µt) t ∈ [0, 1)
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Hence

qx = 1− exp(−µ) ⇒ µ = − log(1− qx)

and therefore

tqx = 1− (1− qx)t t ∈ [0, 1)

and

`x+t = `x(1− qx)t t ∈ [0, 1)

12.3 Balducci assumption

The final possible interpolation that we will consider is called the Balducci assumption, which is expressed

as

1−tqx+t = (1− t)qx t ∈ [0, 1)

meaning that the probability of death before time x + 1 having survived to x + t is proportional to the

length of time remaining (1 − t) with constant of proportionality equal to qx (so that the assumption is

correct for t = 0). Then we have

1− qx = px = tpx 1−tpx+t = (1− tqx)[1− (1− t)qx]
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using the Balducci assumption. So

tqx = 1− 1− qx
1− (1− t)qx

t ∈ [0, 1)

and

`x+t = `x
1− qx

1− (1− t)qx
t ∈ [0, 1)

12.4 Shape of the survival function

12.5 Implied force of mortality
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The uniform distribution of deaths and Balducci assumptions have implications for the force of mortality

over the region [x, x+ 1) to which they are applied.

Based on the known relationship between hazard and survival function, we have

µx+t = − d

dt
log `x+t

For the uniform distribution of deaths this gives

µx+t =
qx

1− tqx
t ∈ [0, 1)

an increasing function of t and for the Balducci assumption, we get

µx+t =
qx

1− (1− t)qx
t ∈ [0, 1)

a decreasing function of t.

12.6 Other intervals

Where a life table contains an interval g 6= 1, so that gqx is presented for (at least) one x, we have the

straightforward generalisations:

tqx =
t

g
gqx t ∈ [0, g) (Uniform)
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tqx = 1− (1− gqx)
t/g t ∈ [0, g) (Constant force)

tqx = 1− 1− gqx

1−
(

1− t
g

)
gqx

t ∈ [0, g) (Balducci)

12.7 The life table quantity µx

Sometimes a life table will include a column of µx values which are the forces of mortality at the exact

ages x in the life table. We know that

µx+t = − d

dt
log `x+t = − 1

`x+t

d`x+t
dt

This can be estimated using the life table quantities `x if we approximate `x+t around x by a polynomial.

If `x+t is well approximated by a quadratic, we have

`x+t = at2 + bt+ c ⇒


`x+1 = a+ b+ c

`x−1 = a− b+ c

and therefore at t = 0

µx = − 1

`x

d`x
dt

= − b

`x
=

`x−1 − `x+1

2`x
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An alternative quartic approximation gives

µx =
8(`x−1 − `x+1)− (`x−2 − `x+2)

12`x
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Chapter 13

Life Table Models

The life table is a summary of the distribution of a variable representing the length of a (usually human)

life time.

Life tables are produced by estimating the distribution, using observed data on the relevant population.

The link between the data and the distribution is the statistical model for the data.

In this section, we introduce some different statistical models which can be used to construct a life table

(and to quantify the uncertainty about life table quantities) based on observed data.

We will assume throughout this section that the life table intervals are whole years (although the results

generalise easily).

13.1 The binomial model

In its simplest form, the binomial model assumes that we observe individuals through whole years of age,

so either the sample is completely closed (no one enters or is censored) or individuals can only enter or

leave the sample under observation at an exact age x.

Then the data can be presented as

Age · · · x− 1 x x+ 1 · · ·

Initial exposed to risk · · · E0
x−1 E0

x E0
x+1 · · ·

Deaths in [x, x+ 1) · · · Dx−1 Dx Dx+1 · · ·
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where the initial exposed to risk, E0
x, at age x is the number of individuals alive and in our observation

sample on their xth birthday.

In a completely closed sample E0
x+1 = E0

x −Dx.

13.1.1 The binomial likelihood

The Dx are observations of independent binomial(E0
x, qx) random variables, so

L(qx) =

(
E0
x

Dx

)
qDxx (1− qx)E

0
x−Dx

The log-likelihood is then

`(qx) = log

(
E0
x

Dx

)
+Dx log qx + (E0

x −Dx) log(1− qx).

Taking first derivative with respect to qx:

d`(qx)

dqx
=
Dx

qx
− E0

x −Dx

1− qx
.
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Setting equal to 0 and solving

0 =
Dx

q̂x
− E0

x −Dx

1− q̂x

⇒ q̂x =
Dx

E0
x

The second derivative of `(qx) with respect to qx is

d2`(qx)

dq2x
= −Dx

q2x
− E0

x −Dx

(1− qx)2
.

The Fisher information is

I(qx) = E

[
−d2`(qx)

dq2x

]

=
E [Dx]

q2x
+
E0
x − E [Dx]

(1− qx)2

=
E0
x

qx
+

E0
x

(1− qx)

=
E0
x

qx(1− qx)

Therefore

s.e.(q̂x) =

(
q̂x(1− q̂x)

E0
x

)1/2

Although this approach is feasible for a cohort study, where the same sample is followed from birth, it is
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limited for more general studies (for example where a population is observed for a fixed period of time)

where individuals enter and exit at ages other than exact birthdays.

13.1.2 Data example

Suppose that we are constructing a period life table, based on deaths observed in the year 2013, and that

our data on 80-year olds (n = 6 individuals) is as follows:

Life Date of 80th birthday Date of death Other information

(if died during 2013)

1 1 June 2012 1 March 2013

2 1 November 2012

3 1 January 2013

4 1 March 2013 Lost to follow-up

on 1 May 2013

5 1 March 2013 1 September 2013

6 1 September 2013

Note that only individual 3 was observed through the whole of [80, 81).

How do we estimate q80?

13.1.3 Likelihood for b−aqx+a

In the example in Section 13.1.2, we have each life i observed over a period [x+ ai, x+ bi] where 0 ≤ ai <

bi ≤ 1.

Where observation ends in death, then bi is the time at which observation would have ended if death had

not happened. Hence we have
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Life 1 2 3 4 5 6

ai 7/12 2/12 0 0 0 0

bi 1 1 1 2/12 10/12 4/12

yi 1 0 0 0 1 0

The likelihood for a sample of size n is

L =
n∏
i=1

bi−aiq
yi
x+ai(1− bi−aiqx+ai)

1−yi

so here

L = 0.42q80.58 0.83q80(1− 0.83q80.17)(1− q80)(1− 0.17q80)(1− 0.33q80)

13.1.4 Approximate likelihood for qx

To estimate qx we need to re-write the likelihood in Section 13.1.3 in terms of qx by using one of the

interpolation formulae in Chapter 12.
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Generally, we have

b−aqx+a = 1− b−apx+a = 1− ST (b− a|x+ a)

= 1− ST (x+ b)

ST (x+ a)

= 1− ST (b|x)

ST (a|x)

= 1− bpx

apx

= 1− 1− bqx
1− aqx

Therefore under the assumption of uniform distribution of deaths (UDD; tqx = tqx) we have

b−aqx+a =
(b− a)qx
1− aqx

.

Under constant force of mortality (tqx = 1− (1− qx)t) we have

b−aqx+a = 1− (1− qx)b−a.
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Under Balducci (tqx = 1− 1−qx
1−(1−t)qx ) we have

b−aqx+a =
(b− a)qx

1− (1− b)qx
.

All of these can be written as

b−aqx+a = (b− a)qx +O(q2x)

≈ (b− a)qx

if qx is small.

13.1.5 Likelihood under UDD

Under the uniform distribution of deaths

L(qx) =
n∏
i=1

(
(bi − ai)qx
1− aiqx

)yi (
1− (bi − ai)qx

1− aiqx

)1−yi

⇒ `(qx) = C +
n∑
i=1

yi log qx +
n∑
i=1

(1− yi) log(1− biqx)

−
n∑
i=1

log(1− aiqx)
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13.1.6 Log-likelihood example

For the data in Section 13.1.2,

`(q80) = C + 2 log q80 + 2 log(1− q80) + log

(
1− 4

12
q80

)

− log

(
1− 7

12
q80

)

Numerical maximisation is necessary, giving

q̂80 = 0.528 s.e.(q̂80) = 0.253
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13.1.7 A simple estimator for qx

Under the approximation

b−aqx+a = (b− a)qx

then, denoting by Yi the random variable representing death of the ith individual, we have

E(Yi) = P (Yi = 1) = (bi − ai)qx ⇒ E

(
n∑
i=1

Yi

)
= qx

n∑
i=1

(bi − ai)

so a (method-of-moments) estimator of qx is

q̃x =

∑n
i=1 yi∑n

i=1(bi − ai)
=

Dx∑n
i=1(bi − ai)

=
Dx

E0
x

where E0
x =

∑n
i=1(bi − ai) is the initial exposed to risk (in this more general situation).

For small values of qx

s.e.(q̃x) ≈
(
q̂x
E0
x

)1/2

so for the data on 14.4-14.5, we have E0
x = 43

12
, so

q̃80 =
2

43/12
= 0.558 s.e.(q̃80) = 0.395
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The estimate is close to the m.l.e. (0.528) but the standard error approximation is not accurate here, as

q80 is not small.

13.1.8 Central exposed to risk

The central exposed to risk at age x, EC
x is defined as the total time of observation in the age range [x, x+1)

of all individuals under study, where observation ends either with death, censoring, or the end of the study

period.

EC
x =

n∑
i=1

(b′i − ai)

where

b′i =


bi if yi = 0 (death not observed)

ti if yi = 1 (death observed at age x+ ti, 0 ≤ ti < 1)

Therefore

EC
x = E0

x −
n∑
i=1

yi(bi − ti)

13.1.9 The actuarial estimator

As we shall see in Chapter 14, it is usually easier to compute EC
x from the available data than it is to
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compute E0
x.

Hence it is common to approximate E0
x using

EC
x = E0

x −
n∑
i=1

yi(bi − ti)

and two further assumptions/approximations:

1. Observed deaths (if they hadn’t died) would have been observed through to bi = 1

2. Observed death times ti ∈ [0, 1) are uniformly distributed through the interval

The consequence of 1 and 2 is that

EC
x ≈ E0

x −
1

2
Dx

Using this approximation, the estimator in 14.10 can be expressed as

q̃x =
Dx

E0
x

=
Dx

EC
x + 1

2
Dx

which is sometimes called the actuarial estimator for qx.

For the data in Section 13.1.2, we have
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Life 1 2 3 4 5 6

ai 7/12 2/12 0 0 0 0

bi 1 1 1 2/12 10/12 4/12

b′i 9/12 1 1 2/12 6/12 4/12

yi 1 0 0 0 1 0

so EC
x = 36

12
and q̃80 = 2

36/12+2/2
= 0.5 (s.e.(q̃80) = 0.354).

13.2 Force of mortality

An alternative approach to estimating the life table is to focus estimation on the force of mortality (hazard)

µx rather than the death probabilities (survival function) qx.

13.2.1 The two-state model

Whereas a binomial model is natural when considering qx, a two-state model is much more natural for µx.

The two-state model is represented by
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and parameterised by the transition intensity (force of mortality) µ12(x) ≡ µx from state 1 (alive) to state

2 (dead).

13.2.2 Estimating µx

We recall that maximum likelihood estimation of transition intensities in a multi-state model is easy in the

time-homogenous case µx = µ, for all x.

For human lifetime models it is unrealistic to assume µx = µ, for all x > 0, but it may be reasonable to

assume, for x = 0, 1, 2, . . ., that

µx+t = µx+ 1
2
, t ∈ [0, 1)

so the force of mortality is modelled as a step function:

x

µ x

0 1 2 3 4 5 6 7 8 9
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13.2.3 Homogeneity assumption

The assumption that µx+t = µx+ 1
2
, t ∈ [0, 1) is usually reasonable for human mortality, because, except in

very early life, µx varies slowly with x.

However it is also necessary for the population being modelled to be as homogeneous as possible, so ideally

separate models should be used for males and females, and for any other variables which are recorded and

which may influence mortality (for example smokers and non-smokers).

t

µ x
+t

0.0 0.2 0.4 0.6 0.8 1.0

Sup−population 1
Sup−population 2
Combined

13.2.4 Maximum likelihood for µx
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Recall from Chapter 9 that the m.l.e. for a transition intensity µx in a multi-state model is

µ̂x+ 1
2

=
Observed number of transitions to death state in [x, x+ 1)

Total observed holding time in alive state in [x, x+ 1)

=
Dx∑n

i=1(b
′
i − ai)

=
Dx

EC
x

with

s.e.
(
µ̂x+ 1

2

)
=
µ̂x+ 1

2

d
1/2
x

For the data on 14.4, we have

µ̂80.5 =
2
36
12

= 0.667 s.e.(µ̂80.5) =
0.667

21/2
= 0.471

13.2.5 Mortality rates

The estimator µ̂x+ 1
2

= Dx/E
C
x is called the observed (or crude) central mortality rate and denoted by m̂x.

Hence

m̂x =
Dx

EC
x
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Similarly, the estimator

q̃x =
Dx

E0
x

is sometimes called the observed initial mortality rate (though this is a bit of a misnomer as this estimates

a probability and not a hazard rate).

The crude central mortality rate m̂x is an estimator of the population central mortality rate, defined as

mx =
E(Dx)

EC
x

the ratio of the expected number of deaths in [x, x+1) to the central exposed to risk, EC
x . So E(m̂x) = mx.

13.2.6 Central mortality rate

In a ‘closed’ population, where exits (except through death) are balanced by entries, we have

E(Dx) = E0
xqx and EC

x = Lx = E0
x

∫ 1

0
tpx dt

Hence, the population central mortality rate is

mx =
E(Dx)

EC
x

=
E0
xqx

E0
x

∫ 1

0 tpx dt
=

qx∫ 1

0 tpx dt
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This is an alternative definition of mx which can be used more generally. Under the assumption of constant

force of mortality µx+t = µx+ 1
2

over [x, x+ 1),

mx =
qx∫ 1

0 tpxdt
=

1− exp(−µx+ 1
2
)∫ 1

0
exp(−tµx+ 1

2
)dt

= µx+ 1
2

which is consistent with the use of the crude central mortality rate being the m.l.e. of µx+ 1
2

under this

assumption.

13.2.7 Estimating qx from m̂x

Under the assumption of a constant force of mortality over [x, x + 1), we have mx = − log(1 − qx) and

hence, we estimate qx using

q̂x = 1− exp(−m̂x) (13.1)

Alternatively, under the assumption of a uniform distribution of deaths over [x, x+ 1), we have

mx =
qx

1− 1
2
qx
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leading to the actuarial estimator

q̃x =
m̂x

1 + 1
2
m̂x

=

Dx
ECx

1 + 1
2
Dx
ECx

=
Dx

EC
x + 1

2
Dx

(13.2)

Typically life tables are computed by obtaining m̂x and then transforming to an estimate of qx using (1)

or (2) above.

13.2.8 Similarity of q̂x and q̃x

q̂x = 1− px = 1− exp(−m̂x)

= 1−
(

1− m̂x +
1

2
m̂2
x −

1

6
m̂3
x + . . .

)

= m̂x −
1

2
m̂2
x +O(m̂3

x)

q̃x =
m̂x

1 + 1
2
m̂x

= m̂x

(
1− 1

2
m̂x +

1

4
m̂2
x + . . .

)

= m̂x −
1

2
m̂2
x +O(m̂3

x)
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So the two estimators of qx are typically very close. For the data on 14.4, we have q̂80 = 0.487 q̃80 = 0.5

13.3 The Poisson model

The Poisson model assumes that the Dx are observations of independent Poisson(mxE
C
x ) random variables.

Hence,

L(mx) =
exp

(
−mxE

C
x

) (
mxE

C
x

)Dx
Dx!

⇒ `(mx) = C −mxE
C
x +Dx logmx

⇒ m̂x =
Dx

EC
x

the same estimator as for the two state model in Section 13.2.5 (with the same standard error).

13.3.1 Poisson model v. multi-state model

As models for estimation, the Poisson and two-state models lead to identical inferences.

Generally, the two-state interpretation is preferred because:

• The model is an exact description of the process, whereas the Poisson is approximate

– a Poisson
(
µx+ 1

2
EC
x

)
distribution actually allows the number of deaths Dx to exceed n the

number of lives under observation.

– the Poisson model treats EC
x as fixed and known in advance (it is not)

• Although the two-stage model is most easily estimated in the case of constant µx+t for t ∈ [0, 1), it can

be estimated more generally (using Kaplan-Meier etc). The Poisson mode requires the assumption

of constant force of mortality.

• Both models extend to examples with multiple decrements (absorbing states) but only the multi-state

approach allows transitions to non-absorbing states.
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13.4 Binomial model v. multi-state model

Generally, the two-state model is preferred because:

• We can perform maximum likelihood estimation exactly in the two-state model, whereas the Binomial

model usually requires additional assumptions, and is usually more complicated.

• The multi-state model extends to examples with multiple decrements (absorbing states) and incre-

ments (transitions to non-absorbing states) but the binomial model is only valid for the two-state

(alive/dead).

• The two-state model uses the exact times of deaths, whereas the Binomial model only uses the

number of deaths.
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Chapter 14

Exposure to Risk

As defined in Chapter 13:

The central exposed to risk at age x, EC
x is the total time of observation in the age range [x, x + 1) of

all individuals under study, where observation ends either with death, censoring, or the end of the study

period.

EC
x =

n∑
i=1

(b′i − ai) (14.1)

where

• ai is the earliest age in [x, x+ 1) at which individual i was observed within the study period

• b′i is the latest age in [x, x+ 1) at which individual i was alive and observed within the study period

14.1 Calculating EC
X

The central exposed to risk at age x, EC
x can be calculated using (1) if we have records, at individual level,

of precise ages at entry into the study and at death or other exit from the study.

However, in mortality studies, records are often secondary data sources where such precise information is

not available. For example, it is common to have records of:

• the number of deaths in the age range [x, x+ 1) within the study period

• the total number of individuals within particular age ranges,such as [x, x + 1), at set dates (often

January 1 each year)

• nothing else.

How can we calculate EC
x using such information?
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14.2 Lexis diagrams

The Lexis diagram is a useful way of visualising lifetime data.

It plots an individual life trajectory as a line on a graph where the y-axis is age and the x-axis is calendar

year.

The following Lexis diagram shows 30 randomly selected lives born between 1915 and 2015. A death

(before end 2014) is marked by a solid circle.

1920 1940 1960 1980 2000

0

20

40

60

80

100

Calendar time

A
ge

14.2.1 Lexis diagram over a study period

The lifetimes which are relevant for the calculation of EC
x can be identified in the Lexis diagram.
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Calendar time

A
ge

start end

x

x+1

Life lengths included in the calculation of EC
x (for the study period with start and end dates identified) are

identified in grey. Deaths included in the calculation of µ̂x+ 1
2

and/or q̂x are identified in grey. Observation

periods which end for reason other than birth and death are identified by unfilled circles.

14.3 Calculating EC
x

The central exposed to risk at age x, EC
x is the total time represented by all the grey lines in the picture

in Section 14.2.1.

If we denote by Px(t) the number of individuals in our study with ages in the interval [x, x + 1) at exact

time t (the number of red lines crossing the vertical line, calendar time = t), then

EC
x =

∫ tf

t0

Px(t)dt

where t0 and tf are the start and end dates of the study, respectively.
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14.4 Approximating EC
x

In practice, we do not know Px(t) for every calendar time t, but we typically have census data which gives

(or allows us to approximate) Px(t) for certain values of t.

Then, we approximate EC
x using the trapezium rule, which approximates Px(t) by a linear function between

the known values.

Trapezium rule approximation to EC
x over the period [t0, tf ] is given by the shaded area. Census times (

at which values of Px(t) are available) are indicated by the vertical dotted lines.
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If Px(t) is available at t0, t1, . . . , tf−1, tf then the trapezium rule for EC
x over the period [t0, tf ] is

EC
x =

∫ tf

t0

Px(t)dt ≈
f∑
i=1

1

2
[Px(ti) + Px(ti−1)](ti − ti−1)

This is known as the census approximation for the central exposed to risk.

When there is census information at t0 and tf but at no time in between, we have

EC
x =

∫ tf

t0

Px(t)dt ≈
1

2
[Px(t0) + Px(tf )](tf − t0)
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If tf−t0 = 1 year, then EC
x is an estimate of the mid-year population at age x (population at time t0+1/2).

14.5 The principle of correspondence

The principle of correspondence as it applies to the estimation of mortality rates states that:

A life alive at time t should be included in the exposure at age x at time t if and only if, were that life to

die immediately, it would be counted in the deaths data at age x.

Thus far, we have been careful to respect this principle. For example, this is why lives entering into a

study at age x+ t where 0 < t < 1 can only be counted towards the exposure from age x+ t (even though

we know they were alive at ages between x and x+ t).

It is important to bear this principle in mind when data on deaths and census data use different age

definitions.

14.6 Age definitions

Ages may be defined by

• Age at last birthday, so ages in [x, x+ 1) are recorded as x.

• Age at next birthday, so ages in [x− 1, x) are recorded as x.

• Age at nearest birthday, so ages in
[
x− 1

2
, x+ 1

2

)
are recorded as x.

If data on deaths and census data use different age definitions, then we transform (approximately) the

census data to match the definition used in the death records, {Dx}.

This is generally straightforward.

For example if death data uses age at last birthday, and census data Px(t) records age at next birthday,

then the census approximation

EC
x ≈

f∑
i=1

1

2
[Px(ti) + Px(ti−1)](ti − ti−1)

needs to be amended with Px replaced by Px+1.
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14.7 Half year adjustments

Where census ages are defined by age at last birthday or age at next birthday and need to be adjusted to

age at nearest birthday, or vice versa, then some further approximation is required.

Suppose that Px(t) records age at nearest birthday, but we require the number of lives aged x at last

birthday (at time t). Then, at time t

• those lives with ages in
[
x, x+ 1

2

)
are counted within Px(t)

• those lives with ages in
[
x+ 1

2
, x+ 1

)
are counted within Px+1(t)

If we make the additional assumption that, within each age x, the Px(t) birthdays are uniformly distributed

through the calendar year, then the census count at time t under our required age definition (aged x at

last birthday) is
1

2
[Px(t) + Px+1(t)]

Other examples are similar - just use common sense!

14.8 Presenting the estimates

Care needs to be taken to be clear about which age range any estimated mortality rates µ̂ and estimated

death probabilities q̂ correspond to.

Recall that in the standard approach, where the age in the definition of deaths (and hence for the calculation

of estimates) is age at last birthday, we use qx to indicate a probability of death in [x, x+ 1) given survival

to x and µx+ 1
2

to indicate a constant force of mortality over [x, x+ 1).

If a different age definition is used for deaths, then we need to adjust these subscripts accordingly, so that

the subscript on q is still the start of the interval, and the subscript on µ is the middle of the interval.

• For age at nearest birthday, our age range is
[
x− 1

2
, x+ 1

2

)
and hence we are estimating qx− 1

2
and

µx.

• For age at next birthday, our age range is [x− 1, x) and hence we are estimating qx−1 and µx− 1
2
.
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14.9 Rate interval

A mortality rate is defined with respect to a particular rate interval, the period over which a life has a

particular age for the purposes of calculation of the mortality rate.

We have focussed on life year rate intervals where a life changes age at a date determined by birthday

(either on the birthday or at the midpoint between birthdays).

Other possibilities are used when exact birthdays are unknown

• Policy year rate intervals, where a life changes age at a fixed date annually (usually the anniversary

date of a particular insurance policy) – used when only age at last birthday, at inception of policy, is

known.

• Calendar year rate intervals, where a life changes age annually on January 1 – used when year of

birth is known.

The correct calculation in these cases can be derived by constructing the Lexis diagram where the y-axis

is age as defined by the rate interval.
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Chapter 15

Comparing Mortality Rates

Standard mortality rates are mortality rates for a (usually) large reference population. For example,

national life tables provide standard mortality rates.

It is often of interest to compare a set of observed mortality rates, for a study population, with a relevant

set of standard rates.

We denote the standard mortality rate at age x by mS
x , and the corresponding observed death count and

total exposure in the study population by Dx and EC
x respectively (it is assumed that the observed and

standard rates are comparable in terms of definition).

A standardised mortality ratio rx at age x is the ratio of the number of observed deaths to the number of

deaths expected in the standard population for the same exposure

rx =
Dx

mS
xEx

=
m̂x

mS
x

15.1 Example

For example, suppose that we observe a regional population of 60-70 year old males over a short period,

and wish to compare observed mortality rates with the latest interim life tables (England 2011-2013).
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x mS
x EC

x Dx rx

60 0.00794 762.0 8 1.32

61 0.00863 755.2 10 1.53

62 0.00949 761.8 5 0.69

63 0.01019 752.0 8 1.04

64 0.01100 733.0 13 1.61

65 0.01199 709.0 16 1.88

66 0.01330 680.8 18 1.99

67 0.01479 657.5 12 1.23

68 0.01586 640.7 14 1.38

69 0.01781 632.0 11 0.98

There seems to be some large discrepancies between mortality rates in our study population and the

standard population, i.e. the values of rx are not close to one.

15.2 Formal comparison by hypothesis test

A formal comparison involves testing the null hypothesis that our observed death pattern has been gener-

ated by the standard rates.

• Rejection of the null hypothesis leads to the conclusion that mortality rates in the study population

are significantly different from the standard rates.

• Non-rejection of the null hypothesis leads to the conclusion that the standard rates could provide a

reasonable model for the study population.

15.3 Large sample distributions

We know that, for the two-state or Poisson models, the central mortality rate

m̂x =
Dx

EC
x
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is the maximum likelihood estimate for the central mortality rate mx (equivalently an assumed constant

force of mortality µx over [x, x+ 1)), and hence in large samples we can use the normal approximation

m̂x ∼ N

(
mx ,

mx

EC
x

)
⇒ m̂x −mx

(mx/EC
x )1/2

∼ N (0, 1)

⇒ (m̂x −mx)
2

mx/EC
x

∼ χ2
1

⇒ (EC
x m̂x − EC

xmx)
2

EC
xmx

∼ χ2
1

⇒ (Dx − EC
xmx)

2

EC
xmx

∼ χ2
1

15.4 The chi-squared test

As we assume that numbers of deaths in different age years are independent, we have that

∑
x

(Dx − EC
xmx)

2

EC
xmx

∼ χ2
v

where n here is the number of age groups over which mortality rates are being compared.

To test the null hypothesis H0: mx = mS
x , we have the test statistic

X2 =
∑
x

(Dx − EC
xm

S
x)2

EC
xm

S
x

and reject H0 if the observed value of X2 is in the upper tail of the χ2
v distribution (typically, the threshold

for rejection is the 95th percentile).
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15.5 Return to the example

For the data in Section 15.1, we have

X2 =
(8− 6.050)2

6.050
+ · · ·+ (11− 11.256)2

11.256
= 23.66

In R:

> table <- read.table( file = "Chap15_cmr.txt", header = TRUE)

>

> head(table)

x mxs ECx dx rx

1 60 0.00794 762.0 8 1.32

2 61 0.00863 755.2 10 1.53

3 62 0.00949 761.8 5 0.69

4 63 0.01019 752.0 8 1.04

5 64 0.01100 733.0 13 1.61

6 65 0.01199 709.0 16 1.88

> X2 <- sum(((table$dx - table$ECx*table$mxs)^2)/(table$ECx*table$mxs))

> X2

[1] 23.65563

We compare this against a chi-squared distribution with 10 degrees of freedom, and we clearly reject at

the 5% level of significance (χ2
10,0.95 = 18.31) and even at the 1% level (χ2

10,0.99 = 23.21).

In R, the quantiles of the χ2 are

> qchisq(p = 0.95, df = 10)

[1] 18.30704

> qchisq(p = 0.99, df = 10)

167



0 5 10 15 20 25 30

Figure 15.1: χ2
10 distribution with upper 5% tail indicated

[1] 23.20925

We can also calculate a p-value in R:

> 1 - pchisq(q = X2, df = 10)

[1] 0.008568838

15.6 Chi-squared test properties

A general rule of thumb is that conclusions from a chi-squared test can be considered reliable if all of the

EC
xm

S
x values are greater than 1, and no more than 20% of them are less than 5.

The chi-squared test is usually a very sound omnibus test which can detect a wide range of discrepancies

between a set of observed and standard rates.

However, other tests exist which can be more powerful to detect particular kinds of discrepancy, in partic-

ular,
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• bias, where the observed rates are generally higher or lower then the standard rates.

• patterns of differences, where there are parts of the age spectrum with positive bias (observed rates

higher than standard) and parts of the age spectrum with negative bias.

• extreme differences, where there are a small number age groups where the observed and standard

rates are very different.

15.7 Multiple comparisons

Caution is required when performing multiple tests of (essentially) the same hypothesis (goodness-of-fit of

standard mortality rates to a set of observed rates).

If we have a hypothesis which is true, and we perform 5 independent tests of the hypothesis then, with

probability 1− 0.955 = 0.226, we will observe at least one significant result (at the 5% level).

So, sound advice is to just use a single test, usually an omnibus chi-squared test unless you have an a priori

reason to expect a particular kind of discrepancy.

• If the null hypothesis is rejected, examine the patterns of observed and standard rates to identify

why there is a significant difference.

• If the null hypothesis is not rejected, you can still examine the patterns of observed and standard

rates to investigate whether there might be any cause for concern about a discrepancy not detected

by your omnibus test, but be cautious about any further formal hypothesis testing.

15.8 Other tests

Bearing in mind the caution advised in using further tests, we will introduce some other possible tests to

detect differences between observed and standard mortality rates.

• Bias

– Cumulative deviations test

– Sign test

• Patterns of differences

– Difference of signs test
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– Serial correlation test

– Grouping of signs test (not recommended) – better to use the Wald-Wolfowitz runs test

• Extreme differences

– Examination of individual standardised differences

We consider tests for bias.

15.9 Tests for bias

15.9.1 Cumulative deviations test

We recall from Section 15.3 that we have the approximation

m̂x ∼ N

(
mx ,

mx

EC
x

)
⇒

∑
x

EC
x m̂x ∼ N

(∑
x

EC
xmx ,

∑
x

EC
xmx

)

⇒
∑

x(Dx − EC
xmx)

(
∑

xE
C
xmx)

1/2
∼ N(0, 1)

To test the null hypothesis H0: mx = mS
x , we have the test statistic

Z =

∑
x(Dx − EC

xm
S
x)

(
∑

xE
C
xm

S
x)1/2

and reject H0 if z, the observed value of Z, is in either tail of the standard normal distribution (typically,

the threshold for rejection is |z| > 1.96, giving a significance level of 5%).

15.9.2 Sign test

The sign test is easy to apply, but generally has low power. The test statistic for the sign test is S =
∑

x Ux

where

Ux =

{
1 if m̂x ≥ mS

x (so m̂x −mS
x has a positive sign)

0 if m̂x < mS
x (so m̂x −mS

x has a negative sign)

Under the null hypothesis H0: mx = mS
x , we have that the Ux are independent with P (Ux = 1) = 0.5, and

therefore that the distribution of S is binomial(v, 0.5) where v is the number of age groups.

We reject H0 if the observed value of S is in either tail of the binomial.
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For all but very small values of v, a normal approximation to the binomial can be used, so we reject H0 if

|z| > z1−α/2, at the α% level, where z is the observed value of

Z =
S ± 1

2
− v

2(
v
4

)1/2 .

Note the continuity correction (+1
2

if S < v
2
, −1

2
if S > v

2
)

15.9.3 Return to the example again

Cumulative deviations test

For the data in Section 15.1, we have, for the cumulative deviations test,
∑

xDx = 115 and
∑

xE
C
xm

S
x =

84.220, and therefore

z =
115− 84.220

84.2201/2
= 3.354

The 0.975th quantile of N(0, 1) is z0.975 = 1.96. So H0 is rejected at 5% level.

In R:

> Z <- sum(table$dx - table$ECx*table$mxs)/sqrt(sum(table$ECx*table$mxs))

> Z

[1] 3.353931

> qnorm(0.975)

[1] 1.959964

Can also calculate a p-value:

> 2*(1 - pnorm(Z))

[1] 0.0007967234
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Sign test

For the sign test, u = (1, 1, 0, 1, 1, 1, 1, 1, 1, 0) and therefore s = 8 and

z =
7.5− 5

2.51/2
= 1.581

This is not significant at the 5% level of significance since z0.975 = 1.96.

In R:

> v <- 10

> S <-sum( as.numeric(table$dx/table$ECx >= table$mxc))

> Z <- (S + 0.5 - 0.5*v)/sqrt(0.25*v)

> Z

[1] -2.84605

> 2*(1 - pnorm(q = Z))

[1] 1.995573

The actual binomial p-value (probability of observing S = 8 or more extreme) is 0.109 (very similar).

> sum(dbinom(x = c(0,1,2,8,9,10), size = v, prob = 0.5))

[1] 0.109375

This illustrates the lack of power of the sign test.
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Chapter 16

Graduation

We expect the true underlying mortality rate in a population to vary smoothly with age.

An estimated mortality rate

m̂x =
Dx

EC
x

is an observation of a random variable, with distribution centred on the true underlying mortality rate,

but subject to variation quantified by its (asymptotic) variance mx/E
C
x which may be large if the exposure

EC
x is not large.

Graduation is the term actuaries and demographers use for the statistical smoothing of estimated mortality

rates, to obtain a more realistic picture of how mortality changes with age, with random variation smoothed

out.

16.1 Example

This is an expanded version of the example used in Chapter 15, where now we observe age groups x =

60, . . . , 89.

16.2 Graduation methods

There are three main approaches to graduation, all of which involve fitting a statistical model

• Graduation against a set of standard mortality rates.

This is used where we have good reason expect our study to share features with the mortality

experience of the standard population.

• Graduation using a parametric model.
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Figure 16.1: Plots of raw estimated mortality rates (original and log scales)

This is usually used where we have large amounts of data.

• Graduation using a semiparametric (smooth) regression model.

This is usually used where we have small amounts of data and no suitable standard mortality rates.

16.3 Graduation against a set of standard rates

The simplest approach is to fit a regression-type model, such as

Dx ∼ Poisson(EC
xmx) where logmx = β0 + β1 logmS

x

This is a generalised linear model (g.l.m.), which is easy to fit in software such as R. The graduated

mortality rates are the maximum likelihood estimates, given by

log m̃x = β̂0 + β̂1 logmS
x

If the standard rates are smooth (as they typically will have been previously graduated) then the estimated

rates will be smooth too.

Students taking MATH3012 will learn more about generalised linear models.
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16.3.1 Return to example

Here we illustrate graduation against standard rates.

This shows the raw rates (circles) standard rates (crosses) and graduated rates (triangles).
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16.4 Graduation using a parametric model

This approach assumes that there is a parametric formula describing the relationship between central

mortality rate (force of mortality) and age.

The simplest model is the (log-linear) Gompertz model

Dx ∼ Poisson(EC
xmx) where logmx = β0 + β1x

This is a g.l.m., which is easy to fit in software such as R. The graduated mortality rates are the maximum

likelihood estimates, given by

log m̃x = β̂0 + β̂1x

The estimated rates are guaranteed to be smooth provided the model is not too complicated.

More complex Gompertz models replace the linear function β0 + β1x with a polynomial β0 + β1x+ β2x
2 +
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· · ·+ βpx
p and are also g.l.m.s

16.4.1 Return to example

Here we illustrate graduation using the log-linear Gompertz model.

This shows the raw rates (circles) and graduated rates (triangles).
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16.5 Models for human mortality

A general Gompertz model

logmx = β0 +

p∑
j=1

βjx
j

is often found to fit mortality at higher ages well, for quite small values of p, such as p = 1 (linear model

with two parameters) or p = 2 (quadratic model with three parameters).

If necessary, the Gompertz model can be extended to the Gompertz-Makeham family, which has

mx = α0 +

q∑
j=1

αjx
j + exp

(
β0 +

p∑
j=1

βpx
p

)
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This is no longer so easy to fit, as it is not a g.l.m.

16.5.1 Graduation using a semiparametric model

This approach estimates the underlying mortality rates by balancing the competing demands of fit to the

data and smoothness of the underlying function. The aim is to find the closest fit without compromising

smoothness.

The resulting model is sometimes called a generalised additive model (g.a.m.) and can be written as

Dx ∼ Poisson(EC
xmx) where logmx = s(x)

where s(x) denotes an arbitrary smooth function of x.

A g.a.m. is fitted by minimising an objective function which balances fit to the data (negative log-likelihood

or similar) and smoothness (integrated squared second derivative or similar).

16.5.2 Return to example

Here we illustrate graduation using the semiparametric (smooth) model.

This shows the raw rates (circles) and graduated rates (triangles).

Error in library(gam): there is no package called 'gam'

Error in gam(d ~ s(x) + offset(log(e)), data = elt, family = poisson): could not find function "gam"
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16.6 Testing the fit of a graduation

A set of graduated mortality rates should be compared with the original rates to check the fit of the

graduation.

The chi-squared test, described in Chapter 15 can be used for this, with test statistic

X2 =
∑
x

(Dx − EC
x m̃x)

2

EC
x m̃x

(16.1)

where m̃x are the graduated rates.

A minor modification is required, because the components of the sum in (1) are no longer independent

because the Dx have been used to obtain the graduated rates m̃x.

This requires us to deduct, from v, one degree of freedom for each estimated parameter in the graduation

process. So if we have estimated p parameters, the reference distribution for the test is χ2
v−p. [Note there

is no easy adjustment for the other tests in Chapter 15 which should be avoided for testing the fit of a

graduation].
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16.6.1 Return to example

For the graduations illustrated in Sections 16.3.1, 16.4.1 and 16.5.2 respectively, we have

• X2 = 31.74 (graduation against standard rates)

• X2 = 28.20 (graduation using Gompertz log-linear model)

• X2 = 25.84 (graduation using semiparametric (smooth) model)

The number of age groups is v = 30 and the number of parameters is p = 2 for the first two models and

p = 3.0 (an estimated function of the overall smoothness) for the semiparametric model.

So we compare our X2 values with the 95% point of χ2
28 (41.34) and the 95% point of χ2

27 (40.11).

We see that there is no evidence to lead us to reject the fit of the graduated rates to the observed rates, so

all three of the graduations seem satisfactory.
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