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Chapter 1

Introduction

1.1 Swurvival analysis

The aim of statistical modelling is to investigate the relationship between an observed response (usually
denoted by y) and k explanatory variables (denoted by x = (x1,...,2x)). In MATH3085/6143, the response
is always the time from origin until an event of interest occurs. Because the response is a time, we

denote the observation ¢ and the corresponding random variable 7T'.
Survival analysis refers to a set of special statistical methods required to analyse time-to-event data.

The object of survival modelling is to learn about the variability in 7" in a population of interest and (often)

how this is associated with other potentially explanatory variables (covariates).

1.2 Applications of survival analysis and alternative terminol-
ogy
Historically, survival analysis originated from medical applications where the event was death and the

time to event was called the survival time. However, survival analysis now has applications in many areas

beyond medicine including the following.

e Demography - age at ‘milestone’ such as e Medicine

— death — survival after heart attack

— birth of first child — time from cancer treatment to relapse
e Engineering e Psychology

— failure time of component — response time to stimulus
e Criminology e Economics

— time to recidivism — duration of unemployment



Important actuarial examples where we are required to model survival data include:

time between pensionable age and death;

time between taking out a life insurance policy and death;

time between taking out a critical illness insurance policy and onset of illness;

failure time for a product with warranty insurance.

Due to the different application areas, you may encounter different terminology. The following table

summarises alternative terminology you may encounter.

survival analysis origin event of interest | time to event
event history analysis | initial event death survival time
duration analysis initiating event | failure failure time
hazard modelling starting event | endpoint response time
reliability analysis time origin outcome waiting time

terminating event | duration

target event spell

episode

1.3 Why is Survival Analysis ‘special’?
Why does survival analysis need its own module? Answers include the following.

e Models for nonnegative random variable 7. In standard normal linear modelling, the response has a

normal distribution which allows for negative responses.
e Data are often not well-described by standard probability distributions, e.g. the normal distribution.
e Data are typically censored (see Section 1.5).

e Model parameters often not of primary interest. Often interest in the whole survival distribution,

e.g. all quantiles, not just measures of location such as mean or median.
e Time-dependent covariates, i.e. they are not fixed like in standard regression modelling.

e Truncation: some cases may be missing (see Section 1.6).



1.4 Types of time to event

The time to event can materialise in different ways.

e Continuous time
In theory the value of T" can be recorded to arbitrary precision.
In practice the value of T is rounded to convenient level of precision.

Tied data values cannot occur in theory but do in practice.

e Grouped continuous time
Imprecise time measurements, only reporting interval in which observation lies.
e.g. time in completed years, months, weeks or days

common in population mortality studies (report age in completed years at death)

e Discrete time
True discrete-time scale, T'=1,2,3, - - -
Examples include number of operations of a machine to first failure, number of attempts to pass a
test ...

1.5 Censoring

A common feature of survival data is censoring. Censoring occurs when we do not know all times-to-event

T exactly, but only have bounds on some of the survival times.

Special methods are needed for censored data because:

e censored observations provide information;
e exclusion of censored data leads to bias;

e discarding censored data would be inefficient.
Observations of T' may be:

e observed precisely;
e right censored;

e left censored;



e interval censored.

In statistical modelling, censoring has to be taken into account to avoid bias.

1.5.1 Right censoring



Reasons for right censoring include:

e event (e.g. death) has not been observed before the end of study;
e individual lost-to-followup;

e individual withdrawal from study.

In most survival analyses (particularly involving mortality) we should expect right censoring.

1.5.2 Left and interval censoring

An observation of T is left censored if we only observe an upper bound for 7', i.e. we know that T was less

than some value, e.g. 18, but not the exact value itself. Left censoring is not as common as right censoring.



An observation of T is interval censored if we only observe an interval for T, i.e. we know that 7" is between
two values, e.g. (18,20), but not the exact value itself. Note that left and right censored observations are

actually interval censored where the upper or lower limit of the interval is —oo or oo, respectively.

1.5.3 Informative and non-informative censoring

Censoring is informative if the event of censoring conveys extra information about 7' (other than it is in a

particular range). Otherwise, censoring is non-informative.

Let C be the variable governing the time at which an observation is (right) censored. If 7' > C' then we
observe T' = (C, o0], and if C' > T' then we observe T precisely.

A sufficient condition for non-informative censoring is that C' and T" are independent variables. For example

C'is a (non-random) time fixed in advance of the study.

Examples of causes of informative censoring include:

e patients lost to follow-up because of good prognosis;

e withdrawals of patients due to ill health related to outcome of interest.

Informative censoring causes complications for statistical modelling because we need a joint model for T’

and C'. We will assume non-informative censoring throughout.

1.6 Truncation

Left truncation of survival data occurs when cases whose survival times 7" are shorter than a given time,
either fixed or random, are not observed e.g. a study of heart attack survival which excludes individuals

who died before reaching hospital.

Right truncation of survival data occurs when cases which haven’t experienced the event are not observed,

e.g. data obtained from death certificates

Truncation is different to censoring in that with truncation we do not observe anything associated with a

truncated value but with censoring we know the observation existed we just do not know its exact value.

In statistical modelling, truncation has to be taken into account to avoid bias.



1.7 Goals of survival analysis

Some basic goals of survival analysis include the following.

Describe how survival in the sample depends on time.

Inference to the population of interest.

e Compare whole survival distributions for groups.

Explain survival differentials using explanatory variables:

Predict future survival.



Chapter 2

Statistical Models

2.1 Introduction

Statistical analysis (or inference) involves drawing conclusions, and making predictions and decisions, using

the evidence provided to us by observed data.

To do this, we use statistical models, where we simulate the process by which the observed data were

generated through a probability distribution.

e The form of the model helps us to understand the real-world process by which the data were generated.

e If the model explains the observed data well, then it should also inform us about future (or unob-

served) data, and hence help us to make predictions (and decisions contingent on unobserved data).

e The use of statistical models, together with a carefully constructed methodology for their analysis
also allows us to quantify the uncertainty associated with any conclusions, predictions or decisions

we make.

We rarely believe in our models, but regard them as temporary constructs subject to improvement.

2.2 Example: Leukaemia

Survival times are given for 33 patients who died from acute myelogenous leukaemia. In R, this can be
found in the leuk object in the MASS package.

> library(MASS)
> head(leuk)



wbc ag time

1 2300 present 65
2 750 present 156
3 4300 present 100
4 2600 present 134
5 6000 present 16
6 10500 present 108
> tail(leuk)

wbc ag time

28 31000 absent 8
29 26000 absent 4
30 21000 absent 3
31 79000 absent 30
32 100000 absent 4
33 100000 absent 43

For the moment, ignore the columns for wbc and ag.

2.3 Notation

Suppose that we have n data observations, then we use
t1,ta, .t
to denote these observed event (failure, death, ...) or censoring times.
For the leukaemia survival times in Section 2.2, n = 33 and t; = 65, t, = 156, ..., t33 = 43.
We denote the complete data by the vector t = (¢1,t2,...,1,).

In a statistical model, we consider ty,ts,...,t, to be observations of random variables (denoted with the
corresponding capital letters)
T,15,...,T,

We also use the vector notation T = (71, Ty, ..., T,).

This is the same as MATH2010, but with ¢ and 7', instead of y and Y, respectively.



2.4 Statistical models

A statistical model specifies a probability distribution for the random variables T corresponding to the

data observations t.

Providing a specification for the distribution of n jointly varying random variables is made much easier if

we can make some simplifying assumptions, such as

1. T\, T, ..., T, are independent random variables

2. T1,Ts, ..., T, have the same probability distribution (so ti,ts,...,t, are observations of a single

random variable 7T")

Assumption 1 is very common, even in quite complex examples.

Assumption 2 is not always appropriate, but may be reasonable when we are modelling a homogeneous pop-
ulation, without other information. Making assumption 2 means we cannot include explanatory variables

so sometimes we will not make this assumption.

When we make assumptions 1 and 2, we say that 1,7, ..., T, are independent and identically distributed

(Lid)

2.5 A fully specified model

Sometimes a model completely specifies the probability distribution of 11,75, ..., T,.

For example, for the leukaemia survival times in Section 2.2, we might assume the model

T, Ts,...,T, £ lognormal(p, o%)
where ;1 = 3 and 02 = 4. Note that 71, Ty, ..., T, lognormal(u, 02) is equivalent to
lOg Tla log T27 R IOg Tn %l N(:UH 02)7
where log is the natural logarithm.

The key is that we have assumed exact values for ; and o2. This would be appropriate when there is
some external (to the data) theory as to why the model (in particular the values of = 3 and o2 = 4) is

appropriate.
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The data can then be used to assess the plausibility of the model. Do the data support the model or not?

We rarely have external theory to specify a model so precisely.

2.6 A parametric statistical model

For the leukaemia survival times in Section 2.2, a more common model would be

T, T5,...,T, w lognormal(p, o%)

where p and o2 are unspecified.

This is called a parametric statistical model as it completely specifies the probability distribution which
generated the data, apart from a (small) number of constants (parameters), in this case the values of u

and o2.

The data are then used to estimate the unknown parameters (1 and o2 here), and to assess the plausibility

of other assumptions (lognormal distribution, independence, etc.)

2.7 A nonparametric statistical model

Sometimes, it is not appropriate, or we want to avoid, making a precise specification for the distribution

which generated Ty, T5,...,T,. Then, we might propose the model
11,15, ...,T, are i.i.d. random variables.

This is sometimes described as a nonparametric (or distribution-free) specification. It imposes limitations
on the kind of statistical inferences we can obtain, but still allows us to do some interesting things, such

as the following.

e Use exploratory (graphical) techniques, such as box plots and histograms to learn about the distri-

bution of the (common) random variable 7" which generated the data

e Estimate features of the distribution of T, such as its expectation E(7T'), variance Var(T), P(T > t)

for some specified ¢y, etc.

e Estimate the distribution or survivor function of 7' (to be covered in this module).

11



2.8 Regression models

Often, we model survival data to learn about the relationship between survival time T" and other potentially

explanatory variables xy, o, .. ..

The leukaemia survival times in Section 2.2 include values of two such explanatory variables:

e ag, taking values in the set {present, absent} (a test result)

e wbc (white blood cell count), a numerical variable

In a regression model, we assume that T,7T5, ..., T, are independent random variables but they are not

identically distributed (we make assumption 1 but not assumption 2).

Instead, we assume the differences between their distributions is explained by a regression function of the

values of the explanatory variables.
For example, for i = 1,...,n we assume T; ~ lognormal(s;, 0?) independently with

Hi = Bo + Brwir + Baio
where x;; is the ith value of wbc and

~J 1 if ag is present;
270 0 if ag is absent;

i.e. x;5 is a dummy variable.

2.9 The data analysis process

The data analysis can be summarised by the following diagram.
Obtain data

!

Examine (visualise) data

+
Specify models

!

Estimate model parameters

1

Compare models

12



1

Assess chosen model

!

Base predictions/decisions on chosen model

In MATH3085/6143 we focus on models and methods which have been specifically developed for survival
data.

13



Chapter 3

The Survival Distribution

3.1 The density function

We model survival time using a random variable 7T'.

If T is a continuous random variable (as we shall generally assume throughout this module) then its
distribution is defined by its probability density function (p.d.f.) fr(t¢), or f(t) for short.

14



3.2 The distribution function
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3.3 The survival function
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3.3.1 The survival function: properties

17



3.3.2 The residual survival function
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3.4 The hazard function
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3.4.1 The hazard function: properties

20



3.4.2 Hazard v. density

The hazard function compares the relative probabilities of events occurring at different times ¢, conditional

on T" > t and hence accounts for the size of the population at risk at ¢.

The p.d.f. simply compares the relative probabilities of events occurring at different times in the population

at large.

A time ¢ with a high value for h(t) is not necessarily a likely failure time, as there may be a small probability

that any individual survives until then.
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3.5 The integrated hazard function
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3.6 Relationships

Only one of the functions fr, Fr, Sr, hy or Hy needs to be specified to completely determine the distri-
bution of T'.

In survival analysis, interest is usually focussed on the survivor function S(¢) and/or the hazard function
h(t).

The others can then be calculated using the relationships presented in the following table.

fT ST hT
fr(t) = —&Sr(t)  hr(t)expl— [ hr(s)ds]
Srt) = [ fr(s)ds exp[— [ hr(s)ds]
hr(t) = —f;offT‘Z)ds — L log Sr(t)

23



Chapter 4

Distributions for Survival Modelling

We now introduce some distributions which are commonly used in survival models. In each case, we present

a family of distributions which depend on one or more parameters.
Each of these distributions has sample space (0, 00) so is appropriate as a model for a survival time 7.

In each case, we shall present the density function fr(t), the survival function Sr(¢) and the hazard function
hr(t).

4.1 The exponential distribution

The exponential (or negative exponential) distribution has a single parameter, the rate (scale) § > 0, is
denoted exp(f) and has p.d.f.

fr(t) = Bexp (—ft)

survival function

St(t) = exp (—ft),

and hazard function
hr(t) = 5.
If T ~ exp(f3) then

BT =2  and Var(T):%.

Note that the p.d.f. is sometimes parameterised as %exp (—;), ie. v=1/p.

24
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The plots below show the density, survival and hazard for two different exponential distributions with
S =1and =2
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4.2 The Weibull distribution

The Weibull distribution has two parameters, the shape « > 0 and the scale 5 > 0, is denoted Weibull(a, 3)
and has p.d.f.
fr(t) = aB (B6)" " exp {— (5t)"}
survival function

St(t) = exp {— (6t)"},

and hazard function
hr(t) = aB (Bt)* .

If T ~ Weibull(e, 8) then

where I'(r) = [~ 2" 'e™"dx is the Gamma function.
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The plots below show the density, survival and hazard for four different Weibull distributions given by
different values of a but all with 5 = 1.
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4.2.1 Weibull distribution properties
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4.3 The log-logistic distribution

The log-logistic distribution has two parameters, the shape a > 0 and the scale § > 0, is denoted
loglogistic(c, 5) and has p.d.f.

_ af(pn)
O T Gorr
survival function .
0= T G
and hazard function B(5t)—!
Q @
"0 =15 G
If T' ~ loglogistic(c, 8) then
T
E(T) = afsin(m/a)

31



The plots below show the density, survival and hazard for two different log-logistic distributions given by
different values of a but all with 5 = 1.
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4.4 The lognormal distribution

The lognormal distribution has two parameters, x4 and o > 0, is denoted lognormal(u, 0?), is the distri-
bution of exp X where X ~ N(u,0?) and has p.d.f.

10 = gty o0 (-~ allont — ) = Lo (1B

(2m)V 20t

survival function

where ¢ and ® are the standard normal density and distribution functions. The lognormal hazard function

is hr(t) = fr(0)/Sr (1)
If T ~ lognormal(u, o) then

E(T) =exp(p+0%/2) and Var(T) = exp(2u + 0?)[expo? — 1].

We do not derive the survival and hazard function here.

The plots below show the density, survival and hazard for two different lognormal distributions given by

different values of o but all with u = 0.
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4.5 The Gompertz distribution

The Gompertz distribution has two parameters, the shape a > 0 and the scale § > 0, is denoted

Gompertz(a, 5) and has p.d.f.
«Q
fr(t) = aexp (Bt — B(eﬂt — 1)>
survival function
Se(t) = exp (—%/ﬁ - 1>) |
B
and hazard function
hr(t) = cvexp(Bt)

See Exercise 5 on Worksheet 1 for derivations of the survival and hazard function

The plots below show the density, survival and hazard for two different Gompertz distributions given by

different values of a but all with g = 1.
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Chapter 5

Survival models: parameter estimation

We start by considering models for a homogenous population of survival times, from which we have observed

a sample t = (tq,...1,).

Some of the observations may be censored.

e Here, we will only consider right censoring (most common) only.

e Extension to other forms of censoring is possible.

Let dy,...,d, be a set of censoring indicators, with

~J 0 unit ¢ was censored at ¢; so actual failure time >
’ 1 failure of unit ¢ was observed at ¢;

Therefore ti, .. .t, are (possibly censored) observations of i.i.d. random variables T = (13,...,T,) =T.

5.1 Parametric models

A parametric model for T specifies the p.d.f fr, apart from the values of a (small) number of unknown

parameters, which we denote by 6.
For example, for a Weibull model, 8 comprises the shape and scale parameters « and 3, i.e. 8 = (o, ).
We write fr(t; @) to recognise the dependence of the p.d.f. fr on 6.

Similarly, we explicitly recognise the dependence of the survivor Sy(t; @) and hazard hr(t;0) functions on
0.

Estimating the distribution of 7" then simply involves estimating 6.

36



Once we have an estimate 8 of 8, we can obtain the corresponding estimates Sy (t;0) and hy(t; 0) of the

survival and hazard functions.

Typically, we use maximum likelihood estimation to obtain 0 in a parametric model.

5.2 Maximum likelihood estimation

Maximum likelihood estimation is a general method for parameter estimation with many good properties
(see MATH3044 for more).

Initially consider a scalar parameter 6.

The maximum likelihood estimator (m.l.e.) 0 maximises the likelihood, L(#), which is simply the joint

probability (density) of the observed data, treated as a function of the unknown 6.

Assuming i.i.d. observations with no censoring

n

L(6) = [ #r(t:0)

=1

as the joint p.d.f. of independent variables is just the product of their individual (marginal) p.d.f.s

5.3 Censored data likelihood

37



5.4 Maximum likelihood properties

38



> gnorm(0.95)

[1] 1.644854

> gnorm(0.975)

[1] 1.959964

> gnorm(0.995)

[1] 2.575829

which would be needed for 90%, 95% and 99% confidence intervals, respectively.

39



5.5 Example: exponential model likelihood

40
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5.5.1 Gehan data

Remission times (in weeks) from a clinical trial of 42 leukaemia patients. Patients matched in pairs and

randomised to 6-mercaptopurine or control. in R, data is found in the MASS package in the gehan.

> library(MASS)
> head(gehan)

pair time cens  treat
1 1 1 control
10 1 6-MP
22 1 control
7 1 6-MP

1 control
32 0 6-MP

S O W N
W W NN

> tail(gehan)

pair time cens  treat
37 19 4 1 control

38 19 9 0 6-MP
39 20 1 1 control
40 20 6 0 6-MP
41 21 8 1 control

42 21 10 0 6-MP

We fit exponential models separately to the treatment group and the control group.

42
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5.6 Example: Weibull model likelihood
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Chapter 6

Non-parametric Survival Estimation

Frequently, we want to estimate the distribution of 7' for the (i.i.d.) homogeneous model based on ob-
servations ti, ..., t, with (right) censoring indicators dy, ..., d,, without assuming a particular parametric

family for fr.

The likelihood is given by

L= 1] fe(t) I Se(t)

idi=1 i:d;=0
and this can be made infinitely large by concentrating fr in infinitesimally narrow regions around each
observed t; (i.e. those for which d; = 1).

Hence the maximum likelihood estimate for the survival distribution is a discrete distribution on the

observed failure times {t; : d; = 1}.

6.1 Discrete survival distributions and likelihood

45
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6.2 The Kaplan-Meier estimator

49



6.2.1 Notes on the Kaplan-Meier estimator

50



6.2.2 Example of calculating the Kaplan-Meier estimate by hand

51



6.2.3 Calculating the Kaplan-Meier estimate using R

The R code below calculates the Kaplan-Meier curve for the times in Section 6.2.2.

time<-c(3, 4, 6, 8, 8, 10)
cens<-c(1,1,0,1,1,1)

km <- survfit(Surv(time, cens)” 1)
par (mfrow=c(1,2))

plot(km, conf.int=FALSE, xlab="t", ylab="Survival function")
plot(km, mark.time=TRUE, xlab="t", ylab="Survival function")

V V VvV VvV VvV V Vv VvV
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By default the plot will include confidence intervals. In the left hand plot these have been turned off by

conf.int = TRUE. In the right hand plot, mark.time=TRUE will indicate censored times with a cross.

The below code plots survival curves for the two groups (control and 6-MP) in the gehan data.

> library(MASS)
>

\

head(gehan)

pair time cens  treat
1 1 1 control
10 1 6-MP
22 1 control
7 1 6-MP
3 1 control
32 0 6-MP

O O b W N =
W W NN -

> gehan.km <- survfit(Surv(time, cens)” treat, data = gehan)
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> plot(gehan.km, xlab="t", ylab="Survival function", 1lty=c(1,2))
> legend("topright", 1lty=c(1,2), legend = c("6-MP","Control"))
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6.2.4 Standard errors and confidence intervals
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6.3 The Nelson-Aalen estimator
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Chapter 7

Survival Regression Models

Commonly, when we observe (possibly censored) survival times ty,...,t,, we also observe the values of k

other variables, x1, ..., zy, for each of the n units of observation.

Then, we drop the assumption that the survival time variables 77, ..., 7T}, are identically distributed, and

investigate how their distribution depends on the explanatory variables (or covariates) xq, ..., k.

In a regression model, we assume that the dependence of the distribution of 7; on the values of x1, ...,z

is through a regression function, which is typically assumed to have linear structure, as

k
i = B + Battia + - + e = Y185 = x| B

J=1

where x; = (241,40, ...,74)" is the k-vector containing the values of zy,...,z; for unit i and 8 =

(B1, B, ..., Br)T is a k-vector of regression parameters.

7.1 Example: leuk data

Survival times for n = 33 patients who died from acute myelogenous leukaemia.

> library(MASS)
> head(leuk)

wbc ag time
1 2300 present 65
2 750 present 156
3 4300 present 100
4 2600 present 134
5 6000 present 16
6 10500 present 108
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Here, we have two potential explanatory variables, wbc and ag. As ag is a factor (a non-numerical variable)

we transform it in the regression function to an indicator (dummy) variable or variables, for example

1 if ag = “present”

I(ag = “present”) = { 0 if ag — “absent”

Similarly further explanatory variables may be created from the numeric covariate wbe, e.g. wbc? to inves-

tigate possible quadratic dependence.

7.2 Proportional hazards

As was the case with homogeneous survival models in Chapter 6, we frequently want to investigate the

dependence of T; on 1, ..., without assuming a particular parametric family for fr,.
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7.3 Partial likelihood
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7.4 Tied failure times
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7.5 Estimation

~

We estimate the regression parameters (3 using the values 8 which maximise the partial likelihood L(3),
or partial log-likelihood

N
i:d;=1 ird;=1 iER;

Maximisation is performed by solving (numerically) the simultaneous equations

0
B

0B)=0, i=1,....k

We also obtain
VC”’(Bz‘) ~ [[(5)71]1;7;

where 1(3) is the observed information matriz defined by
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1(B)i =

In practice, we rely on computer packages to compute estimates.

7.6 Confidence intervals
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7.7 Hypothesis testing
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7.8 Estimating the baseline h((t), Hy(t) and Sy(t)

It is not necessary to estimate hy to answer interesting questions about which covariates affect survival

time, and how they do so.

However, as in the homogeneous model, we can estimate the complete survival distribution nonparametri-

cally, by estimating the hazard function as if the underlying process was discrete.

An estimate of the baseline hazard is given by

N d
ho(t;) = - N
ot ZjeRi eXp(XjTﬁ)

where d; is the total number of failures observed at t;.

As in the homogeneous case in Chapter 6, the discrete hazard estimates can be transformed into an estimate
of the cumulative hazard or survival functions. Again, we let t{,... ¢/ be the m ordered distinct failure

times with corresponding numbers of failures d}, ..., d),. Then

% ’
dj

Hy(t) = Zﬁo(t;) = Z

j=1 Zk:tkzt; exp(xgﬂ)

teltht,), i=0,....,m
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(like the Nelson-Aalen estimator in the homogeneous case) and

d;
Zk:tk >t exp(x}, B)

S'o(t) = HGXP -
j=1

which implies

7.9 Fitting Cox models using R

7.9.1 gehan data

The R code below fits a Cox model with a dummy variable for treatment.

> gehan.cox <- coxph(Surv(time,event=cens) “treat,data=gehan)

> summary (gehan. cox)

Call:

coxph(formula = Surv(time, event = cens) ~ treat, data = gehan)
n= 42, number of events= 30

coef exp(coef) se(coef) z Pr(>|zl)
treatcontrol 1.5721 4.8169 0.4124 3.812 0.000138 *x*x

Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.0 '.' 0.1 ' ' 1

exp(coef) exp(-coef) lower .95 upper .95
treatcontrol 4.817 0.2076 2.147 10.81

Concordance= 0.69 (se = 0.041 )

Likelihood ratio test= 16.35 on 1 df, p=be-05
Wald test 14.53 omn 1 df, p=1le-04
17.25 on 1 df, p=3e-05

Score (logrank) test
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+ vV VvV VvV + V

gehan.S <- survfit(gehan.cox,

newdata = data.frame(treat = c("control","6-MP")))

plot(gehan.S, ylab= "Survival function", xlab="Time", 1ty = c(2,1))
lines(gehan.km, 1ty=c(1,2), col=8)

legend("topright", 1ty = c¢(1,2,1,2), col = ¢(1,1,8,8),

legend = c("6-MP - Cox","Control - Cox","6-MP - KM","Control - KM"), cex=0.8)
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7.9.2 leuk data

The R code below fits a Cox model with two explanatory variables: a dummy variable for ag and a variable
given by the natural logarithm of wbc

> leuk.cox <- coxph(Surv(time) “ag+log(wbc),data=leuk)

> summary (leuk.cox)

Call:
coxph(formula = Surv(time) ~ ag + log(wbc), data = leuk)

n= 33, number of events= 33

coef exp(coef) se(coef) z Pr(>lzl)
agpresent -1.0691 0.3433 0.4293 -2.490 0.01276 *
log(wbc) 0.3677 1.4444 0.1360 2.703 0.00687 **

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.06 '.' 0.1 ' ' 1

exp(coef) exp(-coef) lower .95 upper .95
agpresent 0.3433 2.9126 0.148 0.7964
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log(wbc) 1.4444 0.6923 1.106 1.8857

Concordance= 0.726 (se = 0.047 )

Likelihood ratio test= 15.64 on 2 df, p=4e-04
Wald test 15.06 omn 2 df, p=be-04
Score (logrank) test = 16.49 on 2 df, p=3e-04

> leuk.S <- survfit(leuk.cox,

+ newdata = data.frame(ag = c("present",'"present","absent", "absent"),
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+ wbc = ¢(750,100000,750,100000)))

> plot(leuk.S, ylab= "Survival function", xlab="Time", 1ty = c¢(1,2,1,2),col=c(1,1,8,8))
> legend("topright", 1ty = c¢(1,2,1,2), col = ¢(1,1,8,8),

+ legend = c("Present, 750", "Present, 100000","Absent, 750", "Absent, 100000"), cex=0.8)

o ]
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= R
n N :

X o

O- | temm - === = T e L

o [ ! | l

! 50 100 150
Time

7.10 Checking proportional hazards

The assumption that covariates affect the response through proportional hazards is a strong one and should

be checked where possible.
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The following R code produces these plots for the gehan and leuk datasets, where x; corresponds to treat

and ag, respectively.

\%

logmlog<-function(x){
log(-log(x))}

+

par (mfrow = c(1,2))

gehan[gehan$treat=="control", ])
gehan[gehan$treat=="6-MP", ])

gehan.coxl <- coxph(Surv(time,event=cens)”~1, data

gehan.cox2 <- coxph(Surv(time,event=cens) 1, data

gehan.S1<- survfit(gehan.cox1)
gehan.S2<- survfit(gehan.cox2)
plot(gehan.S1, ylab= "log(-log(S(t)))", xlab = "Time", fun = logmlog,

V V VvV VvV VvV V Vv VvV
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conf.int = FALSE, xlim = range(gehan$time), 1ty = 2)
lines(gehan.S2, fun=logmlog, conf.int = FALSE, 1ty = 1)
legend("bottomright", 1ty = c(2,1), legend = c("Control","6-MP"), cex = 0.8)

leuk[leuk$ag == "absent", ])
leuk[leuk$ag == '"present", ])

leuk.coxl <- coxph(Surv(time) ~ log(wbc), data

leuk.cox2 <- coxph(Surv(time) ~ log(wbc), data

data.frame(wbc = mean(leuk$wbc)))
data.frame(wbc = mean(leuk$wbc)))

leuk.S1<- survfit(leuk.coxl, newdata
leuk.S2<- survfit(leuk.cox2, newdata

plot(leuk.S1, ylab= "log(-log(S(t)))", xlab = "Time", fun = logmlog,

conf.int = FALSE, xlim = range(leuk$time), 1ty = 1)

lines(leuk.S2, fun=logmlog, conf.int = FALSE, 1ty = 2)

legend("bottomright", 1ty = c(1,2), legend = c("Absent","Present"), cex = 0.8)

vV vV + VvV VvV vV vV vV VvV V V V V +

— ___|_I — — :-:_
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<2 <2
o o
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) I )
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I N
o | ---  Control ' —— Absent
| | — 6-MP --- Present
17T 17T T T T T 1 [ [ [ [
0 5 15 25 35 0 50 100 150
Time Time

7.11 Accelerated failure and parametric models

We have focused on semiparametric models, where the parameters 8 do not completely specify the survival

distribution.
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7.11.1 Families of accelerated failure models

T; = exp(n;)To; where n; = Bo + xiTﬁ

To: T;
exp(1) exp(exp[—n])
Weibull(a, 1) Weibull(a, exp[—n;])

loglogistic(a, 1) loglogistic(a, exp[—mn;:])

lognormal(0, o%) lognormal(n;, 02)

7.12 Estimating accelerated failure models

For any parametric AF'T model, we know the form of S7, and fr,, so we can write down the likelihood

L) = [[ f=t:0) ] Sz(t:;0)

i:d;=1 1:d; =0

where 6 comprises the regression parameters fy and B which enter into the computation of 7; and any

other parameters, such as a.
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Estimation is performed by maximum likelihood, to obtain BO, ,(3' etc. with standard errors computed in

the usual way.

Maximisation must be done numerically (e.g. using R)

7.12.1 Example: Weibull ART model for the gehan data

The R code below fits a Weibull ART model with a dummy variable for treatment.

> gehan.wb <- survreg(Surv(time,event=cens) “treat,data=gehan)

> summary (gehan.wb)

Call:

survreg(formula = Surv(time, event = cens) ~ treat, data = gehan)
Value Std. Error z )

(Intercept) 3.516 0.252 13.96 < 2e-16

treatcontrol -1.267 0.311 -4.08 4.5e-05

Log(scale) -0.312 0.147 -2.12 0.034

Scale= 0.732

Weibull distribution

Loglik(model)= -106.6 Loglik(intercept only)= -116.4
Chisqg= 19.65 on 1 degrees of freedom, p= 9.3e-06

Number of Newton-Raphson Iterations: 5

n= 42
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The following R code plots the estimated Kaplan-Meier and Cox survival curves. It thens adds estimated

survival curves from the Weibull model using the curve function.

plot(gehan.S, ylab= "Survival function", xlab="Time", 1ty = c(1,2))
lines(gehan.km, 1lty=c(2,1), col=8)

alpha<-1/gehan.wb$scale
theta.control<-exp(-gehan.wb$coefficients[1]-gehan.wb$coefficients[2])
theta.6MP<-exp(-gehan.wb$coefficients[1])

curve (expr = exp(-(theta.control*x)“alpha), from = 0, to = 35, add = TRUE, 1lty=4)
curve(expr = exp(-(theta.6MP+*x) "alpha), from = 0, to = 35, add = TRUE, 1ty = 4)

legend("topright", 1ty = ¢(1,2,1,2,4,4), col = ¢(1,1,8,8,1,1),
legend = c("Control - Cox","6-MP - Cox","Control - KM",

"6-MP - KM","Control - WB","6-MP - WB"),

cex = 0.6)
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7.12.2 Example: Weibull ART model for the leuk data

The R code below fits a Weibull ART model with a dummy variable for treatment.

> leuk.wb <- survreg(Surv(time) ag + log(wbc), data = leuk)
> summary (leuk.wb)

Call:

survreg(formula = Surv(time) ~ ag + log(wbc), data = leuk)
Value Std. Error z P

(Intercept) 5.8524 1.3227 4.42 9.7e-06

agpresent 1.0206 0.3781 2.70 0.0069

log(wbc) -0.3103 0.1313 -2.36 0.0181

Log(scale) 0.0399 0.1392 0.29 0.7745

Scale= 1.04
Weibull distribution
Loglik(model)= -146.5 Loglik(intercept only)= -153.6

Chisgq= 14.18 on 2 degrees of freedom, p= 0.00084
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Number of Newton-Raphson Iterations: 6
n= 33
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Chapter 8

Multistate Survival Models

Our survival models in Chapters 1 to 7 have assumed that survival (time-to-failure) of each unit is an
observation of a random variable T, and our survival models have been stochastic (probability) models
describing the distribution of 7.

An alternative approach is to model the variable Y; representing the status (alive or dead) of a unit at time
t.

A probability model for a time-indexed variable (one which changes over time) is a stochastic process.
Survival is a simple stochastic process where, at time ¢ = 0, Yy = 1 (alive) and then the process remains
in state 1 unless at some value of ¢ a transition to Y; = 2 (dead) is made after which the process remains

in state 2.

8.1 State space

The set of possible values that a stochastic process Y; can take over time t is called its state space, S.
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8.2 Multi-state models

Stochastic processes allow us to model richer survival time processes than simply two-state alive/dead

processes with an absorbing (dead) state.

Two such examples are:
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8.3 Markov processes

A Markov process model for Y; is one where the future is conditionally independent of the history of the
process given the current state. For example, tomorrow’s weather only depends on today’s weather, and

is independent on all weather before today.
Hence, a Markov process can be specified by transition probabilities
P<Yx+t:j’Y;6:Z) = pij<x7t)7 JGS

for any present time x, future time x + ¢ and present state ¢. This makes explicit that the probability, at
time z, of future realisations of the process depends only on the current state Y, and not on the history
of Y (its values in the period [0,1)).

For a time-homogeneous Markov process, the transition probabilities do not depend on the value of x, so

we can write
P(Yor=71Ye =1) = py(t).

8.4 Transition intensity
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8.5 Chapman-Kolmogorov equations: solving a Markov process
fOI‘ Di j (CE’ , t)

The transition intensity function p;;(z) (or just p,; for a time-homogeneous process) provides an efficient

representation of the process.

How are the transition probabilities p;;(z,t) obtained from the transition intensities p;;(z)?

We need to derive the Kolmogorov forward equations, the solution to which are the required transition

probabilities p;;(z, ).
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8.6 The holding time distribution
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8.7 Conditional transition probability
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8.8 Examples

8.8.1 Two-state model (absorbing state)
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8.8.2 Two-state model (no absorbing state)
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8.8.3 Four-state process
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Chapter 9

Inference for Multistate Models

In Chapter 8 we have introduced multistate models and their properties, and presented several examples

of models with possible applications to survival data analysis.

A key part of the statistical analysis process is making inference about the parameters of the model, on

the basis of observed data.
For a multistate model, with states 1, ..., m the parameters are the transition intensity functions
ﬂk@(m)a i?jzla'-'ama k#f

We will only consider time-homogenous models, so the parameters to be estimated are the transition

intensities
Kk, i?jzla"'7m7 k#é
9.1 Data
For a multistate model, the data will be the transition histories of a set of individuals ¢+ = 1,...,n. We

start by considering the case n =1

In this case, we might observe something like:

Transition Start 1 2 3 4 5 6 7 8 9 10 11 End
Time 0.3 032 041 056 0.82 084 1.31 141 155 1.79 204 224 28
State 2 1 3 4 1 2 1 3 2 3 1 2 2
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9.3 Likelihood
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9.4 Maximum likelihood estimation for u
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9.5 Standard errors for i
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9.6 Example

Transition Start 1 2 3 4 5 6 7 8 9 10 11 End

Time 0.3 032 041 056 082 084 1.31 1.41 155 1.79 2.04 224 28
State 2 1 3 4 1 2 1 3 2 3 1 2 2
4 — _
3 — —
)
8
n
2 —] -
1 — — - — —
| | | | | | |
0.0 0.5 1.0 1.5 2.0 2.5 3.0
t
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9.7 Multiple sequences (n > 1)

In practice, we will observe multiple histories of transitions corresponding to individuals ¢ = 1,...,n in

our data sample, with corresponding transition frequencies [n;z] and holding times {¢}, }.
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Chapter 10

Modelling Human Lifetime

For the rest of this module our focus will be on modeling human life length, that is the time (from birth

or some other specified time origin) to death in a specified human population.

Models for human human lifetimes have a huge importance, for example

e Billions of pounds are invested in pension funds. Calculation of the liabilities requires us to be able

to predict lifetimes of current and future pensioners.

e Planning public services requires requires us to predict age-structured populations, sometimes within
a small geographical area. This requires us to be able to forecast mortality (along with fertility and

migration)

10.1 Special features of human lifetime
There are a number of practical reasons why human lifetime modelling requires special treatment:

e The long time scales involved (much longer than the horizon of a standard statistical study)

e The requirement to use secondary data (collected for other purposes, such as census and death

registration data)

e Data sets are often large (good!) but the data can be coarse (bad!) For example, ages may only be

provided in whole years.
e Standard distributions tend not to provide a good fit for human lifetimes.

e The distribution of human lifetime is changing (lifetimes are getting longer)
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10.2 Models

As previously, we use T' to denote the time from a specified origin (usually birth) until death.

Then we know that a survival model can be specified by the survival function Sr(t) or the hazard function
hr(t) for T

Alternatively, we can think of human survival as a two-state process for Y, € {1,2} (alive/dead) with an

absorbing state

Then the process is specified by the transition intensity function pio(z) at time x or alternatively the

transition probabilities p11(z,t) = 1 — p1a(x, t).

10.3 Models are equivalent
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10.4 Alternative notation

115



10.5 p, and g, notation
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10.6 Force of mortality
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Chapter 11

The Life Table and Life Expectancy

11.1 Life tables

The distribution of lifetime for a population is often summarised in a life table.

Excerpt for males: Excerpt for females:

Age Males Age Females

x my Gx ke d, Ly T, I8 e, x m, a. I d, L, T, u, e,
0 0.004757 0.004746 100000 475 99576.3 7896837 78.97 0 0.003818 0.003811 100000 381 99660.7 8279504 82.80
1 0.000306 0.000306 99525 30 99510.2 7797072  0.000369 78.34 1 0.000238 0.000238 99619 24 99607.0 8179692 0.000276 82.11
2 0.000207 0.000207 99495 21 99484.6 7697562 0.000246 77.37 2 0.000176 0.000176 99595 17 99586.4 8080086 0.000202 81.13
3 0.000147 0.000147 99474 14 99467.0 7598078 0.000172 76.38 3 0.000133 0.000133 99578 14 99571.0 7980500 0.000152 80.14
4 0.000115 0.000115 99460 12 99453.9 7498612 0.000128 75.39 4 0.000107 0.000107 99564 10 99559.1 7880929 0.000118 79.15

109 0676172 0.491440 8 4 55 11 0.661588 143 109 0.668760 0.487656 27 13 20.0 39 0.652973 144
110 0701065 0.503943 4 2 28 5 0685990 139 110 0.697334  0.502089 14 7 10.1 19 0681051 139
111 0.725677 0.516003 2 1 14 3 0.709972 134 111 0724789 0515573 7 4 5.0 9 0708358 134
112 0750015 0.528125 1 1 0.7 1 0733841 1.30 1120.751040 0528125 3 1 24 4 0734218 130
113 0.776042 0.539776 2 1 11 2 0758668 1.26
114 0799785 0.550574 1 1 05 1 0781684 123

This is ELT17, the latest decennial life table for England, available at:

http://www.ons.gov.uk/ons/rel/lifetables/decennial-life-tables/
english-life-tables--no-17--2010-12/stb-elt17.html

11.2 The life table quantities /., ¢, and d,

The life table summarises the distribution of a lifetime variable by presenting the function Z, for a set of
discrete values x.
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11.3 Life expectancy

11.3.1 Obtaining e, from the life table
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11.3.2 Obtaining éx from e,
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11.3.3 Obtaining e, from an irregular life table
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11.3.4 Expectation of life in an interval

11.3.5 Life expectancy using L, and/or T,
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11.3.6 The trapezium rule approximation
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11.4 Concluding remarks

11.4.1 Period life tables

The life table ELT17 in Section 11.1 is a period life table.

That means that the table was constructed by estimating ¢, from mortality data over a particular period
in time (here 2010-2012).
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® (91 is estimated using individuals born around 1990

® (g is estimated using individuals born around 1930

ete.

So the table does not actually describe the distribution of lifetime of any actual individual or group of
individuals.

e Individuals born around 1990 will expect to experience a different (lower?) gg; in 2071

e Individuals born around 1930 experienced a higher go; in 1951

11.4.2 Cohort life tables

A life table describing the mortality experience of a particular population, as it develops over time is called
a cohort life table.

A cohort is the name given to a population all born at or around the same time (typically in the same

calendar year).
The cohort life table estimates ¢, based on the mortality experience of the cohort at that age.

The problem with a cohort life table is that it cannot be completed until the cohort have died out, by

which point it is only really of interest to historians!
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Chapter 12

Interpolating a Life Table

The life table only includes values of ¢, and ¢, and hence Sr(x) for certain, usually evenly spaced integer,

values of z.

We can ‘fill in the gaps’ by interpolating, but this requires us to make assumptions about the distribution

of lifetime 7" in the intervals between ages represented in the life table.

We shall initially assume that the rows of the life table represent x = 0,1,2,3,.... The generalisation to

other intervals is straightforward.

At age x +t, where t € [0,1) we have
Ut = LoSr(x+1t) = LP(T >x+HT > x)P(T >x) = p.ly

So completion of the life table requires us to specify our belief about ;p, (or equivalently ,q,) for ¢t € [0,1).

12.1 Uniform distribution of deaths
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12.2 Constant force of mortality
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12.3 Balducci assumption

131



12.4 Shape of the survival function

12.5 Implied force of mortality
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12.6 Other intervals

Where a life table contains an interval g # 1, so that ,g, is presented for (at least) one z, we have the

straightforward generalisations:

t
tQz = ;ng te|0,9) (Uniform)
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e = 1— (1= 4q.)" te€0,9) (Constant force)

1- T
1 = 1 — o
t

1= (1-1) 0

t€|0,9) (Balducci)

12.7 The life table quantity u,
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Chapter 13

Life Table Models

The life table is a summary of the distribution of a variable representing the length of a (usually human)

life time.
Life tables are produced by estimating the distribution, using observed data on the relevant population.
The link between the data and the distribution is the statistical model for the data.

In this section, we introduce some different statistical models which can be used to construct a life table

(and to quantify the uncertainty about life table quantities) based on observed data.

We will assume throughout this section that the life table intervals are whole years (although the results

generalise easily).

13.1 The binomial model

In its simplest form, the binomial model assumes that we observe individuals through whole years of age,
so either the sample is completely closed (no one enters or is censored) or individuals can only enter or

leave the sample under observation at an exact age x.

136



13.1.1 The binomial likelihood
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Although this approach is feasible for a cohort study, where the same sample is followed from birth, it is
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limited for more general studies (for example where a population is observed for a fixed period of time)

where individuals enter and exit at ages other than exact birthdays.

13.1.2 Data example

Suppose that we are constructing a period life table, based on deaths observed in the year 2013, and that

our data on 80-year olds (n = 6 individuals) is as follows:

Life Date of 80" birthday Date of death Other information
(if died during 2013)
1 1 June 2012 1 March 2013
2 1 November 2012
3 1 January 2013
4 1 March 2013 Lost to follow-up

on 1 May 2013
1 March 2013 1 September 2013
1 September 2013

S O

Note that only individual 3 was observed through the whole of [80, 81).

How do we estimate ggo?

13.1.3 Likelihood for ;_,q..,

139



13.1.4 Approximate likelihood for ¢,
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13.1.5 Likelihood under UDD
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13.1.6 Log-likelihood example

143



13.1.7 A simple estimator for ¢,
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13.1.8 Central exposed to risk

13.1.9 The actuarial estimator
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13.2 Force of mortality

An alternative approach to estimating the life table is to focus estimation on the force of mortality (hazard)

i, rather than the death probabilities (survival function) g,.

13.2.1 The two-state model

Whereas a binomial model is natural when considering ¢,, a two-state model is much more natural for p,.

The two-state model is represented by
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and parameterised by the transition intensity (force of mortality) p12(z) = p, from state 1 (alive) to state
2 (dead).

13.2.2 Estimating (.,

We recall that maximum likelihood estimation of transition intensities in a multi-state model is easy in the

time-homogenous case u, = pu, for all x.

For human lifetime models it is unrealistic to assume pu, = p, for all x > 0, but it may be reasonable to
assume, for x =0,1,2,..., that

Hatt = Mac—&-%? te [Ov 1)

so the force of mortality is modelled as a step function:

Mx
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13.2.3 Homogeneity assumption

The assumption that p, = p, +1s t € [0, 1) is usually reasonable for human mortality, because, except in

very early life, u, varies slowly with x.

However it is also necessary for the population being modelled to be as homogeneous as possible, so ideally
separate models should be used for males and females, and for any other variables which are recorded and

which may influence mortality (for example smokers and non-smokers).

---- Sup-population 1
-------- Sup—population 2
—— Combined
=
| | | | |
0.0 0.2 0.4 0.6 0.8 1.0

13.2.4 Maximum likelihood for p,
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13.2.5 Mortality rates
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13.2.6 Central mortality rate
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13.2.7 Estimating ¢, from m,
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13.2.8 Similarity of ¢, and ¢,
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13.3 The Poisson model

The Poisson model assumes that the D, are observations of independent Poisson(m,ES) random variables.

Hence,

exp (—m,ES) (mef)Dx
D,!
= l(my) = C—myES + D,logm,

L(m,) =

A D,
= my, = ﬁ
T

the same estimator as for the two state model in Section 13.2.5 (with the same standard error).

13.3.1 Poisson model v. multi-state model

As models for estimation, the Poisson and two-state models lead to identical inferences.

Generally, the two-state interpretation is preferred because:

e The model is an exact description of the process, whereas the Poisson is approximate

— a Poisson <uw %Exc ) distribution actually allows the number of deaths D, to exceed n the
number of lives under observation.
— the Poisson model treats E¢ as fixed and known in advance (it is not)
e Although the two-stage model is most easily estimated in the case of constant p, 4, for t € [0,1), it can

be estimated more generally (using Kaplan-Meier etc). The Poisson mode requires the assumption

of constant force of mortality.

e Both models extend to examples with multiple decrements (absorbing states) but only the multi-state

approach allows transitions to non-absorbing states.
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13.4 Binomial model v. multi-state model

Generally, the two-state model is preferred because:

e We can perform maximum likelihood estimation exactly in the two-state model, whereas the Binomial

model usually requires additional assumptions, and is usually more complicated.

e The multi-state model extends to examples with multiple decrements (absorbing states) and incre-

ments (transitions to non-absorbing states) but the binomial model is only valid for the two-state
(alive/dead).

e The two-state model uses the exact times of deaths, whereas the Binomial model only uses the

number of deaths.
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Chapter 14

Exposure to Risk

As defined in Chapter 13:

The central exposed to risk at age z, ES is the total time of observation in the age range [z,z + 1) of

all individuals under study, where observation ends either with death, censoring, or the end of the study

period.
EC =) (b — ai) (14.1)

where

e q; is the earliest age in [,z 4+ 1) at which individual ¢ was observed within the study period

e U is the latest age in [z, 2z + 1) at which individual ¢ was alive and observed within the study period

14.1 Calculating E¥

The central exposed to risk at age ¥, ES can be calculated using (1) if we have records, at individual level,

of precise ages at entry into the study and at death or other exit from the study.

However, in mortality studies, records are often secondary data sources where such precise information is

not available. For example, it is common to have records of:

e the number of deaths in the age range [z, z + 1) within the study period

e the total number of individuals within particular age ranges,such as [x,z + 1), at set dates (often

January 1 each year)

e nothing else.

How can we calculate ES using such information?
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14.2 Lexis diagrams

The Lexis diagram is a useful way of visualising lifetime data.

It plots an individual life trajectory as a line on a graph where the y-axis is age and the x-axis is calendar

year.

The following Lexis diagram shows 30 randomly selected lives born between 1915 and 2015. A death
(before end 2014) is marked by a solid circle.

100 —

60 —
40

20

I I I
1920 1940 1960 1980 2000

Calendar time

14.2.1 Lexis diagram over a study period

The lifetimes which are relevant for the calculation of E¢ can be identified in the Lexis diagram.
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start end

Calendar time

Life lengths included in the calculation of ES (for the study period with start and end dates identified) are
identified in grey. Deaths included in the calculation of i, 1 and/or ¢, are identified in grey. Observation

periods which end for reason other than birth and death are identified by unfilled circles.

14.3 Calculating E¢

The central exposed to risk at age x, ES is the total time represented by all the grey lines in the picture
in Section 14.2.1.

If we denote by P,(t) the number of individuals in our study with ages in the interval [x,z + 1) at exact

time ¢ (the number of red lines crossing the vertical line, calendar time = t), then

ty
EC = / P,(t)dt

to

where ¢y and ¢; are the start and end dates of the study, respectively.
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14.4 Approximating E¢

In practice, we do not know P,(t) for every calendar time ¢, but we typically have census data which gives

(or allows us to approximate) P,(t) for certain values of ¢.
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14.5 The principle of correspondence

The principle of correspondence as it applies to the estimation of mortality rates states that:

A life alive at time t should be included in the exposure at age x at time t if and only if, were that life to

die immediately, it would be counted in the deaths data at age x.

Thus far, we have been careful to respect this principle. For example, this is why lives entering into a
study at age x +t where 0 < ¢ < 1 can only be counted towards the exposure from age = + ¢ (even though

we know they were alive at ages between = and x + t).

It is important to bear this principle in mind when data on deaths and census data use different age

definitions.

14.6 Age definitions

Ages may be defined by

e Age at last birthday, so ages in [z, + 1) are recorded as x.
e Age at next birthday, so ages in [z — 1, ) are recorded as z.

e Age at nearest birthday, so ages in [x — %, xr + %) are recorded as .

If data on deaths and census data use different age definitions, then we transform (approximately) the

census data to match the definition used in the death records, {D,}.
This is generally straightforward.

For example if death data uses age at last birthday, and census data P,(t) records age at next birthday,

then the census approximation

[Px(ti) + Pe(ti-1)](ti — tiz1)

N | —

f
D>
i=1
needs to be amended with P, replaced by P,.1.
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14.7 Half year adjustments

Where census ages are defined by age at last birthday or age at next birthday and need to be adjusted to

age at nearest birthday, or vice versa, then some further approximation is required.

Suppose that P,(t) records age at nearest birthday, but we require the number of lives aged = at last
birthday (at time ¢). Then, at time ¢

o those lives with ages in [z, 2 + 1) are counted within P,(t)

e those lives with ages in [:L‘ + 3.2+ 1) are counted within P, ()

If we make the additional assumption that, within each age x, the P,(t) birthdays are uniformly distributed
through the calendar year, then the census count at time ¢ under our required age definition (aged x at
last birthday) is

[P0+ P (1)

Other examples are similar - just use common sense!

14.8 Presenting the estimates

Care needs to be taken to be clear about which age range any estimated mortality rates {1 and estimated
death probabilities ¢ correspond to.

Recall that in the standard approach, where the age in the definition of deaths (and hence for the calculation
of estimates) is age at last birthday, we use ¢, to indicate a probability of death in [z, z + 1) given survival

to x and p,, 1 to indicate a constant force of mortality over [z,z + 1).

If a different age definition is used for deaths, then we need to adjust these subscripts accordingly, so that

the subscript on ¢ is still the start of the interval, and the subscript on p is the middle of the interval.

e For age at nearest birthday, our age range is [a: — L4 %) and hence we are estimating G and

2
e

e For age at next birthday, our age range is [z — 1, 2) and hence we are estimating ¢, and fhg1-
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14.9 Rate interval

A mortality rate is defined with respect to a particular rate interval, the period over which a life has a

particular age for the purposes of calculation of the mortality rate.

We have focussed on life year rate intervals where a life changes age at a date determined by birthday

(either on the birthday or at the midpoint between birthdays).

Other possibilities are used when exact birthdays are unknown

e Policy year rate intervals, where a life changes age at a fixed date annually (usually the anniversary
date of a particular insurance policy) — used when only age at last birthday, at inception of policy, is

known.

e Calendar year rate intervals, where a life changes age annually on January 1 — used when year of

birth is known.

The correct calculation in these cases can be derived by constructing the Lexis diagram where the y-axis

is age as defined by the rate interval.

163



Chapter 15

Comparing Mortality Rates

Standard mortality rates are mortality rates for a (usually) large reference population. For example,

national life tables provide standard mortality rates.

It is often of interest to compare a set of observed mortality rates, for a study population, with a relevant

set, of standard rates.

We denote the standard mortality rate at age x by m?, and the corresponding observed death count and
total exposure in the study population by D, and EY respectively (it is assumed that the observed and

standard rates are comparable in terms of definition).

A standardised mortality ratio r, at age x is the ratio of the number of observed deaths to the number of

deaths expected in the standard population for the same exposure

15.1 Example

For example, suppose that we observe a regional population of 60-70 year old males over a short period,
and wish to compare observed mortality rates with the latest interim life tables (England 2011-2013).
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60
61
62
63
64
65
66
67
68
69

0.00794
0.00863
0.00949
0.01019
0.01100
0.01199
0.01330
0.01479
0.01586
0.01781

762.0
755.2
761.8
752.0
733.0
709.0
680.8
657.5
640.7
632.0

13
16
18
12
14
11

1.32
1.53
0.69
1.04
1.61
1.88
1.99
1.23
1.38
0.98

There seems to be some large discrepancies between mortality rates in our study population and the

standard population, i.e. the values of r, are not close to one.

15.2 Formal comparison by hypothesis test

A formal comparison involves testing the null hypothesis that our observed death pattern has been gener-

ated by the standard rates.

e Rejection of the null hypothesis leads to the conclusion that mortality rates in the study population

are significantly different from the standard rates.

e Non-rejection of the null hypothesis leads to the conclusion that the standard rates could provide a

reasonable model for the study population.

15.3 Large sample distributions
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15.4 The chi-squared test

As we assume that numbers of deaths in different age years are independent, we have that

where n here is the number of age groups over which mortality rates are being compared.

To test the null hypothesis Hy: m, = m?, we have the test statistic

X2 =Y (Ds — Eym3)°

ComS
x Exmx

and reject Hy if the observed value of X? is in the upper tail of the x? distribution (typically, the threshold

for rejection is the 95th percentile).
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15.5 Return to the example

For the data in Section 15.1, we have

(86050 . (11-11.256)
6.050 11.256

X? = = 23.66

In R:

> table <- read.table( file = "Chapl5_cmr.txt", header = TRUE)

> head(table)

X mxs ECx dx rx
1 60 0.00794 762.0 8 1.32
2 61 0.00863 755.2 10 1.53
3 62 0.00949 761.8 5 0.69
4 63 0.01019 752.0 1.04
5 64 0.01100 733.0 13 1.61
6 65 0.01199 709.0 16 1.88

> X2 <- sum(((table$dx - table$ECx*table$mxs) "2)/(table$ECx*table$mxs))
> X2

[1] 23.65563

We compare this against a chi-squared distribution with 10 degrees of freedom, and we clearly reject at
the 5% level of significance (x3) 95 = 18.31) and even at the 1% level (x3 99 = 23.21).

In R, the quantiles of the y? are

> qchisq(p = 0.95, df = 10)
[1] 18.30704
> qchisq(p = 0.99, df = 10)
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Figure 15.1: x3, distribution with upper 5% tail indicated

[1] 23.20925

We can also calculate a p-value in R:
> 1 - pchisq(q = X2, df = 10)

[1] 0.008568838

15.6 Chi-squared test properties

A general rule of thumb is that conclusions from a chi-squared test can be considered reliable if all of the

ESm? values are greater than 1, and no more than 20% of them are less than 5.

The chi-squared test is usually a very sound omnibus test which can detect a wide range of discrepancies

between a set of observed and standard rates.

However, other tests exist which can be more powerful to detect particular kinds of discrepancy, in partic-

ular,
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e bias, where the observed rates are generally higher or lower then the standard rates.

e patterns of differences, where there are parts of the age spectrum with positive bias (observed rates

higher than standard) and parts of the age spectrum with negative bias.

e extreme differences, where there are a small number age groups where the observed and standard

rates are very different.

15.7 Multiple comparisons

Caution is required when performing multiple tests of (essentially) the same hypothesis (goodness-of-fit of

standard mortality rates to a set of observed rates).

If we have a hypothesis which is true, and we perform 5 independent tests of the hypothesis then, with
probability 1 — 0.95% = 0.226, we will observe at least one significant result (at the 5% level).

So, sound advice is to just use a single test, usually an omnibus chi-squared test unless you have an a priori

reason to expect a particular kind of discrepancy.

e If the null hypothesis is rejected, examine the patterns of observed and standard rates to identify

why there is a significant difference.

e [f the null hypothesis is not rejected, you can still examine the patterns of observed and standard
rates to investigate whether there might be any cause for concern about a discrepancy not detected

by your omnibus test, but be cautious about any further formal hypothesis testing.

15.8 Other tests

Bearing in mind the caution advised in using further tests, we will introduce some other possible tests to

detect differences between observed and standard mortality rates.

e Bias

— Cumulative deviations test

— Sign test
e Patterns of differences

— Difference of signs test
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— Serial correlation test

— Grouping of signs test (not recommended) — better to use the Wald-Wolfowitz runs test
e Extreme differences

— Examination of individual standardised differences

We consider tests for bias.

15.9 Tests for bias

15.9.1 Cumulative deviations test

We recall from Section 15.3 that we have the approximation

Mg ~ N(mx, %) = Y E%mn, ~ N(ZEfmm, ZEfmz>

r T

(3, ESm,)"?

~ N(0,1)

S

x

To test the null hypothesis Hy: m, = m?, we have the test statistic

> (D — ESmY)
(Z Ecm5)1/2

and reject Hy if z, the observed value of Z, is in either tail of the standard normal distribution (typically,

the threshold for rejection is |z| > 1.96, giving a significance level of 5%).

15.9.2 Sign test

The sign test is easy to apply, but generally has low power. The test statistic for the sign testis S = > U,

where

1 ifrh, >m?  (so 1, —m? has a positive sign)
5 (so 1, —m? has a negative sign)

Under the null hypothesis Hy: m, = m?, we have that the U, are independent with P(U, = 1) = 0.5, and

therefore that the distribution of S is binomial(v, 0.5) where v is the number of age groups.
We reject Hj if the observed value of S is in either tail of the binomial.

170



For all but very small values of v, a normal approximation to the binomial can be used, so we reject Hy if

2| > 21_q/2, at the a% level, where z is the observed value of

_ S*5-3%
(2)1/2
4

Note the continuity correction (+3 if S < 2, —1if S > 2)

15.9.3 Return to the example again

Cumulative deviations test

For the data in Section 15.1, we have, for the cumulative deviations test, > D, = 115 and Y. ESm$ =

84.220, and therefore

115 — 84.220
e Y VY
§ 84.2201/2 3:39

The 0.975th quantile of N(0,1) is zg.975 = 1.96. So Hy is rejected at 5% level.

In R:

> Z <- sum(table$dx - table$ECx*table$mxs)/sqrt (sum(table$ECx*table$mxs))
> Z

[1] 3.353931

> gnorm(0.975)

[1] 1.959964

Can also calculate a p-value:

> 2%(1 - pnorm(Z))

[1] 0.0007967234
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Sign test

For the sign test, u = (1,1,0,1,1,1,1,1,1,0) and therefore s = 8 and

7.5—5

This is not significant at the 5% level of significance since zyg75 = 1.96.

In R:

> v <- 10

> 8 <-sum( as.numeric(table$dx/table$ECx >= table$mxc))
> Z <= (S + 0.5 - 0.5%v)/sqrt (0.25%v)

> Z

[1] -2.84605

> 2%(1 - pnorm(q = Z))

[1] 1.995573

The actual binomial p-value (probability of observing S = 8 or more extreme) is 0.109 (very similar).

> sum(dbinom(x = ¢(0,1,2,8,9,10), size = v, prob = 0.5))

[1] 0.109375

This illustrates the lack of power of the sign test.
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Chapter 16

Graduation

We expect the true underlying mortality rate in a population to vary smoothly with age.

An estimated mortality rate
D,

:F

~

Mg

is an observation of a random variable, with distribution centred on the true underlying mortality rate,
but subject to variation quantified by its (asymptotic) variance m,/ES which may be large if the exposure

E¢ is not large.
Graduation is the term actuaries and demographers use for the statistical smoothing of estimated mortality

rates, to obtain a more realistic picture of how mortality changes with age, with random variation smoothed

out.

16.1 Example

This is an expanded version of the example used in Chapter 15, where now we observe age groups x =
60, ...,89.

16.2 Graduation methods

There are three main approaches to graduation, all of which involve fitting a statistical model

e Graduation against a set of standard mortality rates.

This is used where we have good reason expect our study to share features with the mortality

experience of the standard population.

e Graduation using a parametric model.
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Figure 16.1: Plots of raw estimated mortality rates (original and log scales)

This is usually used where we have large amounts of data.

e Graduation using a semiparametric (smooth) regression model.

This is usually used where we have small amounts of data and no suitable standard mortality rates.

16.3 Graduation against a set of standard rates

The simplest approach is to fit a regression-type model, such as
D, ~ Poisson(ESm,) where logm, = By + (1 logm?

This is a generalised linear model (g.l.m.), which is easy to fit in software such as R. The graduated

mortality rates are the maximum likelihood estimates, given by
log m, = Bo+ b1 log m?

If the standard rates are smooth (as they typically will have been previously graduated) then the estimated

rates will be smooth too.

Students taking MATH3012 will learn more about generalised linear models.
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16.3.1 Return to example

Here we illustrate graduation against standard rates.

This shows the raw rates (circles) standard rates (crosses) and graduated rates (triangles).
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16.4 Graduation using a parametric model

This approach assumes that there is a parametric formula describing the relationship between central

mortality rate (force of mortality) and age.

The simplest model is the (log-linear) Gompertz model
D, ~ Poz’sson(Efmx) where logm, = By + Sz

This is a g.l.m., which is easy to fit in software such as R. The graduated mortality rates are the maximum

likelihood estimates, given by
lOg My = BO + le

The estimated rates are guaranteed to be smooth provided the model is not too complicated.

More complex Gompertz models replace the linear function 3y + f1z with a polynomial £y + f1z + B22% +
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-+ B,2P and are also g.l.m.s

16.4.1 Return to example

Here we illustrate graduation using the log-linear Gompertz model.

This shows the raw rates (circles) and graduated rates (triangles).

log(m,)

age (x)

16.5 Models for human mortality

A general Gompertz model

P
logm, = By + Z Bj:cj

j=1
is often found to fit mortality at higher ages well, for quite small values of p, such as p = 1 (linear model

with two parameters) or p = 2 (quadratic model with three parameters).

If necessary, the Gompertz model can be extended to the Gompertz-Makeham family, which has

q p
My = Qg + Z aj:cj + exp (50 + Z Bpxp>
j=1

J=1
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This is no longer so easy to fit, as it is not a g.l.m.

16.5.1 Graduation using a semiparametric model

This approach estimates the underlying mortality rates by balancing the competing demands of fit to the
data and smoothness of the underlying function. The aim is to find the closest fit without compromising

smoothness.

The resulting model is sometimes called a generalised additive model (g.a.m.) and can be written as
D, ~ Poisson(ESm,) where logm, = s(x)

where s(z) denotes an arbitrary smooth function of x.

A g.a.m. is fitted by minimising an objective function which balances fit to the data (negative log-likelihood

or similar) and smoothness (integrated squared second derivative or similar).

16.5.2 Return to example

Here we illustrate graduation using the semiparametric (smooth) model.

This shows the raw rates (circles) and graduated rates (triangles).

Error in library(gam): there is no package called 'gam'

Error in gam(d ~ s(x) + offset(log(e)), data = elt, family = poisson): could not find functior
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16.6 Testing the fit of a graduation

A set of graduated mortality rates should be compared with the original rates to check the fit of the

graduation.

The chi-squared test, described in Chapter 15 can be used for this, with test statistic

2 _ (D$ - Egmm)z
X2 =3 o, (16.1)

where m, are the graduated rates.

A minor modification is required, because the components of the sum in (1) are no longer independent

because the D, have been used to obtain the graduated rates m,.

This requires us to deduct, from v, one degree of freedom for each estimated parameter in the graduation
process. So if we have estimated p parameters, the reference distribution for the test is X%_p. [Note there
is no easy adjustment for the other tests in Chapter 15 which should be avoided for testing the fit of a

graduation].
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16.6.1 Return to example

For the graduations illustrated in Sections 16.3.1, 16.4.1 and 16.5.2 respectively, we have

e X? = 31.74 (graduation against standard rates)
e X? = 2820 (graduation using Gompertz log-linear model)

e X? = 2584 (graduation using semiparametric (smooth) model)

The number of age groups is v = 30 and the number of parameters is p = 2 for the first two models and

p = 3.0 (an estimated function of the overall smoothness) for the semiparametric model.
So we compare our X? values with the 95% point of x3 (41.34) and the 95% point of x3, (40.11).

We see that there is no evidence to lead us to reject the fit of the graduated rates to the observed rates, so

all three of the graduations seem satisfactory.
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